Thought Experiment – Photons up Close

Recently I published a paper on radio frequency photons:  Thought Experiment- Photons at Radio Frequencies in which I described a photon from the time of emission from a radio antenna as it propagated outward until it separated into photons and was later captured by an antenna.   

What I found was that the photon started as a whorl or vortex, if you wish, traveling initially in patterns of counter-rotating fields that eventually became identified as individual photons.  These whorls/vortexes have a specific size (diameter) and energy defined by the frequency of the emission.   A point on the rotating photon describes sinusoidal patterns that fall behind the photon in the classic electromagnetic patterns.   The thought experiment allowed me to calculate the maximum diameter of the photon at 105 mhz to be about 0.9 meters and a visible-light blue photon to have a maximum diameter of 143 nm.

Having learned from that, I decided to do some more thinking about photons in general.  What applies at radio frequencies should also apply to photons of light and higher energies.   It occurs to me that we can learn a lot about photons by experimenting with them at radio frequencies.   We know that radio signals diffract around sharp structures and even exhibit double slit diffraction if passed between sets of tall structures with sharp edges.   I don’t know of any single-photon experiments at radio frequencies but I suspect that the results would be the same; diffraction still occurs in which the photon interferes with itself.  

Having looked at it from a whorl or vortex photon standpoint (as opposed to a wave standpoint), it is easy to imagine a photon nearly 1 meter in diameter passing around both sides of a telephone pole or being pulled around a corner of a building as one edge drags on the sharp edge there.    

The same thing should happen to a red, blue or green photon encountering superfine wires or sharp edges of a razor blade or slit.  

Not having the equipment nor the results of any such experiments at radio frequencies, I’m going to move this into a thought experiment and follow a photon up close, drawing on the earlier radio frequency thought experiment and adding details that agree with what we know about light photons and see where we go.  In this case I’ll consider a 450 nm blue photon.   I mention a blue photon only to help differentiate it from a radio frequency photon in the following discussion.  It doesn’t matter what it is, they should behave the same.

Blue Photon

 by James Tabb  (ripples greatly exaggerated)

A blue photon is emitted when a source (the emitter) such as, for example an electron that changes energy levels from a higher level to a lower one, shedding the excess energy as a photon.     I imagine it like a sudden elastic-like release of energy in which the energy packet moves away instantly to light speed.  If the packet follows Einstein’s equations (see graphic below) for space distortion, then a blue photon is immediately flattened into a disk of 143 nm diameter (see graphic above) because the lengthwise direction shrinks to zero at velocity c.   (This diameter was derived as d = λ/Π from my previous article and depends on the wavelength)

In my description of a radio photon, the energy in the packet is rotating around the perimeter of the packet at c as well as moving away from the emitter at c.   The limit of c in the circular direction also limits the diameter of the packet.

I can picture photons that slosh back and forth left to right or up and down or in elliptical shapes.   All of these shapes and directional sloshing, and rotation are equivalent to various polarization modes – vertical, horizontal, elliptical and circular.   I can also imagine that these shapes/polarizations are created as photons are beaten into these modes while passing though lattices or slits that encourage the photon to go into one mode or the other or to filter out those going in the wrong direction.   I can begin to see that when photons at light wavelengths are thought of as rotating whorls, it becomes easier to think of how this all works.   None of the modes involve back and forth motion because to do so, the portion going backward would never catch up to the forward mode or it would exceed c.   

Now that the photon has been emitted and begins its flight, we are purely in a relativistic mode.  Einsteins equations for space distortion and time dilation tell us that the path in front of the photon shrinks to zero and the time of flight shrinks to zero as well.   This has always raised a troubling problem because we know that some photons take billions of years to fly across the universe and move about 1 nanosecond a foot of travel.  

In order to resolve this problem, I’m now imagining an experiment in which an excellent clock is built into a special photon that starts when the photon is emitted and stops when it arrives. (Good luck reading it, but this is only a thought experiment, so I’m good to go.)  Perhaps the path is a round trip by way of a mirror or some sort of light pipe such that a timer triggered at the start point also stops again when the photon comes back. If the round trip is about 100 feet then you might expect the timer and the photon’s clock to both register about 100 nanoseconds more or less for the trip.

When the experiment is run, the photon’s clock is still zero when it arrives and the other timer does indeed read very close to 100 nanoseconds. The photon seems to have made the trip instantly whereas we measured a definite trip time that turns out to agree with the velocity of c for the photon throughout its trip.  I decided that is the correct outcome based on the time dilation equations of Einstein when using velocity = c. 

So we see that Einstein’s time dilation equation applies to the photon in its reference frame, not ours.  There are nuances here that we should consider for the photon:

(1) Since the distance the photon travels is zero, the time it takes is zero as well.  That is why the photon’s clock does not change.   Therefore, I claim that the space/time jump is instantaneous and therefore the landing point is defined at the moment the photon is created regardless of the distance between the two points.

(2) Since we know that the photon packet cannot go faster than c and by experiment, it does not arrive faster than c, it appears obvious to me that the instantaneous space jump is not completed instantly, only defined and virtually connected.  I visualize that for one brief moment, both ends of the path are (almost) connected; emitter to photon, photon to its destination through a zero length virtual path. The photon does not transfer its energy to the destination at that moment because the path is only a virtual one.

(3) I visualize the photon’s forward path shortened to zero, an effect which has everything forward to it virtually plastered to its nose, like a high powered telescope pulling an image up with infinate zoom capability.   All of space in front of it is distorted into a zero length path looking at a dot, its future landing point.   

(4) The photon immediately moves away from the emitter at light speed. As it does so, the path beside and behind the photon expands to its full length (the distance already traveled, not the total path) with a dot representing the destination and the entire remaining path virtually plastered to its nose.   A zero-length path separates the nose of the photon from the landing point. The path already traveled expands linearly as the photon moves away from the emitter along that path at a velocity of c.

(5) I claim that the photon’s zero-length virtual path is effectively connected all the way through, including all the mediums such as glass, water, vacuum, etc.  However, the photon only experiences the various mediums as the path expands as it moves along.  I make this claim because it explains all of the quantum weird effects that we see described in the literature and thus appears to be verified by experimental results.  My next paper will detail this for the reader.

The landing point only experiences the photon after the entire path is expanded to its full length. In the example, the starting and ending points are 100 feet apart with a mirror in between, but the entire distance between (for the photon) is zero and the time duration (for the photon) is also zero (with maybe a tiny tiny bump when it reverses at the mirror). For one brief instant, the emitter is connected to the photon and the photon to the mirror and back to the timer through two zero-length paths, but it is a virtual connection, not yet actually physically connected.

The mirror and landing point remains virtually attached to the nose of the photon which moves away from the emitter at light speed, c. The photon’s clock does not move and the photon does not age during the trip, but the photon arrives at the timer after 100 nanoseconds (our time) and transfers its energy to the timer’s detector.

(6) I also claim that all the possible paths to the destination are conjoined into one path that is impossibly thin and impossibly narrow, much like a series of plastic light pipes all melted into one path that has been drawn into a single extremely thin fiber.   This is a result of the fact that the distances to every point in the forward path is of zero length, and therefore all the paths are zero distance apart.

In effect the entire path is shrunk to zero length at the time of emission due to a severe warp in space. Zero length implies zero duration for the trip as well, and the photon is in (virtual) contact with the mirror (and also with the finish line) instantly, but the space it is in expands at the rate of c as it moves away from the emitter.

Everything in front of the photon is located as a dot in front of it. It experiences the mirror after 50 nanoseconds of travel time. The reflected photon is still stuck to the finish point as the space behind it expands throughout a second 50 nanosecond time lapse and the finish line timer feels the impact at the correct total 100 nanosecond time while the photons clock never moves.

The major point learned in this thought experiment is that the photon’s path and landing point is perfected at the time it is emitted whether the path is a few inches or a billion light years long due to the relativistic space/time warp. This is a major point in explaining why quantum weirdness is not really weird, as I will discuss later in a followup paper that clarifies the earlier posts on this subject.

Wormhole Concept 

I visualize the photon as entering a sort of wormhole, the difference is that the photon “sees” the entire path through the wormhole but does not crash through to the other side until the wormhole expands to the full length of what I call the “Long Way Around (LWA)” path. Unlike a wormhole, it is not a shortcut as it merely (as I call it) Defines the Path and Destination (DPD).  This concept also applies to any previously described wormhole – see my previous paper, Five Major Problems with Wormholes

Here is the important point: The photon in this wormhole punches through whatever path it takes instantly at the moment of creation and defines the DPD. Every point in the DPD is some measurable LWA distance that is experienced by the photon as the path expands during its transition along the path. The LWA includes any vacuum and non vacuum matter in its path such as glass, water or gas.

So now we have a real basis for explaining why quantum weirdness is not weird at all – it is all a matter of relativity, as I will explain in my followup paper.

Oldtimer

Copyright 2007  – James A. Tabb   (may be reproduced in full with full credits)

Five Major Problems with Wormholes

Five Major Problems with Wormholes 

Wormholes are supposed to be shortcuts from one time and place to another time and place.   For example, drive your spaceship into one end and exit near some other star, perhaps 1000 light years away.   Drive back through and return to earth.  Simple enough.

  

 Wormhole drawing from Wikipedia

If a wormhole is ever created for passage of man or machine by some future civilization, then there will be some major problems to overcome other than the biggie… creating the wormhole in the first place.  I believe this is the first time most, if not all, of these problems have been identified.  

Although the wormhole supposedly bends/warps time and space, there is a fundamental limit to how fast you can get from here to there, no matter how much time and space are warped.   That limit is c and it applies to the Long Way Around (LWA) path length.  First let me tell you why I think so as it is key to the some of the rest of my list of problems.  

A common wormhole is created by every photon that exists.   For example, a photon does a space/time warp from Proxima Centauri (the nearest star to our sun) to our eye.  The distance and time the photon experiences is zero.  It does not age during the trip and the total distance is zero at the moment of creation.   However, it still takes 4.22 years to get here, the time light takes to travel the total distance from that star to ours.     

Einstein’s equations say that the photon traveling at c has a total path length of zero and travel time of zero duration.  I believe that applies to every photon.   However, we know that the photon takes 4.22 light years and travels about 28 trillion miles from that star to our eye as we measure or calculate it.   Even though the path the photon sees is zero length and the time it ages is zero time during the trip, it still does not arrive until the entire 4.22 light years elapses.  

It is my theory that this is because the space/time warp of our photon wormhole connects the emission point on Proxima Centauri and the landing point in our eye only in a virtual sense and only in the first instant of its creation.   

After that first instance, the photon moves away from the emitter at light speed and the path behind it expands as the photon travels along it at c.   The photon’s path to our eye always remains zero length, but it traverses the path at c, leaving an expanded path behind until the entire path is traversed.   The photon never transfers its energy until the entire path is completed at the maximum velocity of c.   

My first wormhole problem is that the time required is no less than the long way around travel time at c.   Anything entering the wormhole is imposibly close to the other end (as for our photon example), but cannot actually get there until the path from the entry point expands behind the object moving at c throughout the entire trip, the LWA, just as it does for the photon wormhole.  

Even if the wormhole spans a time/space warp of 1000 light years, it will still take no less than 1000 years to get from here to there even if the wormhole appears to be of zero length.   The crew of the space ship that manages to get into a wormhole would not age during the trip, a distinct advantage for the crew and the ship’s lifetime.  It would seem to be instantaneous and if it were indeed reversible, then the return trip would be just as fast.  Drive into one end and return immediately and likely not be but a few hours older.   However any companions that were left behind on earth would be dead nearly 2000 years.   All this assumes the problems that follow can be solved.

The second problem is that a wormhole cannot be established before it is created at each end.  If  one end is created today and the other is somehow created on a distant star, the wormhole would not be operable until the second wormhole is created, presumably at least the normal space ship travel time from one construction site to the other, even if the construction crew travels at c.    Unless the wormhole acts like a reversible time machine, a much more difficult arrangement, it will take the same amount of time each way through the wormhole with the arrow of time aging both ways and it cannot begin to be used as a shortcut until both ends are finished.    It would take a very patient civilization to plan for such a feat.

My third problem involves getting into any wormhole that moves you along at light speed.  The nose of the ship would presumably be accelerated to light speed even before the crew compartment made it into the opening.   The result would be powdered spaceship and crew with photons leading the way, larger particles and atoms dragging behind, but no survivors or anything recognizable.  

The fourth problem is getting out of the wormhole.  Let’s say somehow you can get your space ship in and up to speed.   Everything going out the other end arrives there at light speed.   A huge blast of various rays and light burping out the other end, frying anything loitering near the exit.  A great light show, but hardly useful for the crew wanting to get from here to there in a hurry, or their greeting party for that matter.  The wormhole turns out to be a great ray gun! 

My fifth problem involves reversibility.  We assume that entering the wormhole at either end establishes the direction of travel.  However, it appears to me that it is very likely that the arrow of time exists only in the direction of the creation of the wormholes.  That is, from the first wormhole to the second.  Items entering the first one created would be moving in an arrow of time from the earliest time to the latest.   Items trying to enter the second wormhole to come back would be rejected in a smoldering heap or blast of rays.   If that logic is reversed, the problem still exists:  One way only!

Arrow of Time Established? 

I believe this applies to photons and particles in general.  The equations for physics always seem to allow collisions to be reversable and there are no laws that would not allow any set of particle interactions to be reversible.   However, it is my opinion that photons are not reversible for the reasons listed above.  They are zipping through non reversible wormholes.   Energy is transferred from point of creation to some other point where it is absorbed or transferred to another particle and can’t go back though the wormhole as it is a one way street, from first end created to the second end and never the other way around.  That means the arrow of time always moves forward and is never reverseable.  It can be stopped but never reversed.

SuperLumal Transmission?

As a side note, for the reasons listed in the problems listed above, there will be no speedup of communications through a wormhole.  No superlumal transmissions, no advantage over sending it across space the normal way, and very likely, no two way communications.   I hope these revelations do not stop any projects in progress as science will advance no matter what.  8>)  Photon wormholes are the best anyone will be able to do.

Oldtimer

PS – check out my earlier wormhole article

Copyright 2007, James A. Tabb  (may be reproduced with full credits)

 

 

Black Holes and Density

 A question asked of me by klcrace earlier inspired this article. 

Black Holes and Density.

Here is a good source of information on black holes:
http://en.wikipedia.org/wiki/Black_hole

Our atoms are mostly empty space, lots of room for things to fit into. Normally, the fields/forces around atoms keep them relatively far apart and the spaces in between remain mostly empty.  All mass have gravitational effects on surrounding masses and the more mass the higher those effects, but as long as the density remains below a certain point there is no black hole. It is not so much the mass that makes a black hole but the density – mass in a tiny space.

As a star gains mass, it’s outer mass compresses the inner material but the internal pressure keeps the atoms apart and the interior spaces empty. When a star grows too much or its internal pressure decreases because its fuel is depleted, it can collapse and when the density reaches a certain point, it technically becomes a “black hole”, one in which the gravitational pull is too great for light to escape. This is often accomplished by a stellar explosion that implodes the mass toward the center of the star, greatly increasing its density.

The mass is still the same but it is concentrated in such a small space (essentially zero space) that the density is enormous (essentially infinite), and the space around it is so severely warped that light does not get out. The density is self sustaining because the gravity of the masses within it is high enough to keep it together, except after much evaporation.

It is thought that much smaller masses can also be compressed by outside forces to the point that the small mass achieves black hole density, but none are known to exist. It would take enormous energy to accomplish this.

For example if you were able to compress a baseball enough, it would become a micro black hole. But it would have to be compressed so much that its outer radius would be essentially zero (much smaller than an atom).  The mass would still be that of a baseball, but the density would be so high that light could not get away from it. Space would be severely warped around this very tiny black hole, but only very very near its center, probably too small to be detected.  Gravity from such a source at the distance you would normally pick up the ball would be no more than for a regular baseball because the mass is still a baseball mass. If you could weigh it, (a real problem) it would weigh the same. It is the ratio of the mass to the radius that is important. Make the mass high enough and/or compress to an extremely small radius and you have a black hole.

Known and predicted black holes contain mass greater than our sun. Sometimes thousands and even billions of times greater. Yet the size of the space occupied by the mass in the black hole is still essentially zero. The gravity around such large masses is extremely high and will capture all light out to a certain radius, the event horizon. The event horizon can be far from the central mass depending on the amount of mass. The capture range is usually further out than the size of the central mass, and grows as the black hole captures more and more mass while the central region does not grow measurably, if at all.

Black holes can evaporate and if there is no nearby mass that it can capture to replenish itself with, a black hole could evaporate to a smaller mass than what was required to establish it. Smaller in mass than our own sun.

Black holes do typically have very high gravitational pulls, proportional to the mass inside and inversely to the distance to the center.  But a micro black hole could theoretically be floating around a lab that created it (such as with a high energy accelerator) and never be noticed as it would likely evaporate before it hit anything and even if it did encounter a part of the lab, it would be so tiny and have such small gravitational pull at atomic-size distances that it would not capture more “stuff” needed to grow. Likely it would just poof out of existence unnoticed.

At least I hope so.

What I want to emphasize it that any given mass has a certain gravitational pull at any given distance, black hole or not. Super-massive black holes at say 1000 light years away have the same gravitational effects as that of a group of stars of the same total mass that are close together (but not close enough to be a black hole) at the same 1000 light year distance. The difference is the black hole has much higher concentration of mass, occupies much less volume, and also warps space much more tightly than the group of stars with the same mass. The stars shine brightly and the black hole is, …well, black.

Oldtimer

Location or Momentum

Space Guy

Bruster Rockit: Space Guy!                           by Tim Rickard

A key element of quantum mechanics is Heisenberg’s uncertainty principle, which forbids the simultaneous measurement of the position and momentum of a particle along the same direction, as so aptly illustrated by Tim Rickard above. 

E = c \, p \!  for a photon, where E is the energy, c is the speed of light and p is the momentum.    So the momentum of a photon is equivalent to the energy of the photon divided by the speed of light or p =  E/c  where E is also related to the frequency of the photon by Planck’s Constant E = hf.   h is Planck’s constant and f is the frequency assigned to the photon.   f is also related to the wavelength of the photon by f = c/λ.  

So E = hc/λ = cp       Therefore    p = h/λ

But we know the values for both h (6.26×10^-34 joules sec.) and for λ if we know the color of the photon.  Usually if we are dealing with coherent light (red laser for example) then we know the wavelength λ very accurately.   Thus we know the momentum very accurately.

There is another factor in this equation – spin angular momentum of the photon which is independent of its frequency.  Spin angular momentum is essentially circular polarization for a photon.  Angular momentum is ±h/2π.   It is the helical momentum of the photon along its flight path.   In order to pin down the momentum we also need to know its angular momentum, but it is a constant that is either spinning one way or the other, no half spins no quarter spins just +h/2π or -h/2π.   

The key for this discussion is that we know the momentum for any photon if we know its wavelength.   p = h/λ and the direction of its spin ±h/2π.   According to Heisenberg’s principle we cannot know the location of the photon if we know its momentum.  Since we do know its momentum we are at a loss to try to pin the location to a particular spot such as through a narrow slot or pinhole.  

Whenever we try to fit a photon through a slot, we are trying to pin down the location as it goes through the slot.  The narrower we make the slot the closer we are trying to pin it down.   Nature resists by causing havoc with our measurements – fuzzy behavior/weird effects.

Pair Production

Pair production is a possible way for nature to slip one by us – putting a photon through both slots simultaneously, thus confounding our measurements completely.   When a photon hits an obstacle such as the thin barrier between the two slots, it melds through the slots around the barrier as in my earlier posts or possibly down-converts to a lower frequency pair of photons (or up-converts to a higher frequency) through pair production (conserving energy by the frequency change).  These pairs recombine on the far side of the barrier through an up (or down) conversion process causing an effective interference due to jiggling in the conversion process. 

Our barrier strip knocks the photon silly, and it responds by splitting up, zipping through the two slits independently, then recombining in a way that looks like interference.

Virtual Photons 

Another type of pair production would be through creation of a virtual photon – a pair with one real and one virtual as also mentioned in an earlier post.   The scenario is the same – barrier knocks photon silly, virtual photon forms, passes through other side, then effectively recombines while interfering with the “real” one.   The original and virtual photons could actually be down converted or up converted photon pairs that recombine by up or down conversion causing interference-like behavior.

In either case, blocking one slit or the other would prevent melding and also prevent pair production as well as the formation of virtual photons.

Pair production through down/up conversion and/or virtual pairs would fit better with particles with mass acting like waves that cause interference when passed through slits.  Even bucky balls and cats could potentially form virtual pairs if moving close to the speed of light.   Well, again, maybe not cats.

 Oldtimer

Virtual Particles – A new look at double slit weirdness

I was looking at a web site by Hitachi Global concerning “Advanced Research – Electron phase microscopy” today.   They have a neat movie based on the diagram of an electron microscope which you can find here:

(link to diagram)     http://www.hitachi.com/rd/research/em/doubleslit-f1.html

 These pictures are theirs and are copyrighted by them so all that can be done is show you the link.

Here is a link to their video of the results of a 30 minute run (sped up to just a minute or two):

http://www.hqrd.hitachi.co.jp/rd/moviee/doubleslite-n.wmv

They send electrons one at a time from the source, about 10 per second.  Those that make it around the rod are detected and displayed on a monitor.  

 After about 20 minutes, clear interference patterns develop on the monitor as shown in their video.   

The electrons are accelerated through 50,000 volts, and achieve velocities about 40% of the speed of light.

 These electrons appear to be passing simultaneously around the barrier and interfering with themselves.  Either that or they have some sort of lingering effect due to ctime as I posted in a recent article.   I have a new thought:

Virtual Particles

I believe that there is one obvious answer to such a weird quantum effect – virtual particles.   Photons and any particle achieving significant relativistic effects, such as high speed electrons, atoms, molecules, bucky balls, cats, and anything that can be raised to near the speed of light can also produce companion virtual particles – virtual photons, electrons, etc. when their flight paths are significantly disturbed.  (Well maybe not cats, but who knows?)   

We are getting into new theory here with a new thought experiment!   If an electron such as those in an electron microscope is accelerated to a high enough speed is then jostled by close encounter with a small barrier, it will generate an identical virtual electron on the other side of the barrier.  This applies to any particle raised to relativistic speeds.  If the other side of the barrier is closed off by a detector, then the virtual particle disappears without effect on either the detector or the original electron, being absorbed by the barrier along with the original electron.  If the barrier is open, however, it recombines with the electron after passing around the barrier to produce an interference with itself during the recombination process.

It is similar in effect to the process described in my Quantum Weirdness – Part 2 Double Slit Weirdness post whereby the photon melds around a slit.  Perhaps it is not a meld but a virtual photon recombination – the effect would be the same.

A photon, or any relativistic electron, or other particle jostled by the fields around atoms in a close encounter with the edges of a slit or other barrier would generate a virtual photon, electron or particle that would appear on the other side of the offending barrier and then recombine at a point downstream to cause an interference.   Barriers that block the other side would kill the virtual particle.   A particle that did not exist long enough to recombine with its generating particle would die without causing any effect on the offending detector or barrier.    Only particles that come close enough to be jostled by the fields of the barrier atoms would generate virtual particles on the other side.  Others not close enough to the barrier to be jostled by it would not create the virtual particles.

It is my thought that where there is such jostling, both the particle and its virtual particle might die in the edge of  the barrier if one or the other side were not open, and only those electrons that are far enough from the barrier to not create a virtual pair would continue through the open port to the screen, and thus not show any interference pattern.   

Only if both sides are open would a virtual pair survive a close encounter with a barrier and then be attracted together to recombine on a path toward a pattern maximum.   Scattering around the maximum would be a result of random spacing of near misses and pure chance.

It is another thought that if an electron is buffeted by a barrier and survives the trip but its virtual electron is lost in the material of the barrier, the electron that survives will still be affected by the virtual particle at the point of its destruction, perhaps its phase or displacement or both.   It just won’t show an interference pattern, but it would show some effect of the structure of the barrier material at the point the virtual particle is destroyed, making it possible to “see” the structure of the material within the barrier itself.  Maybe that is just a description of how an electron phase microscope actually works.  The phase is changed by the destruction of the virtual electron and that change depends on the structure at the point the virtual electron lands. 

Copyright 2007,

James A. Tabb

Marietta, Georgia

Thought Experiment – Photons at radio frequencies

I like to do thought experiments.   Many of them lead to dead ends, but I write most of them down anyway because I’ve found that very often I will go down another thought path and end up crossing an earlier one.  Then things get interesting.  The one below includes a thought experiment that dates to Fri, 25 Sep 1998, and I’ve updated it a little to my more recent thoughts.  If you have an idea, keep it around as it may become useful someday.  This one is mostly useful to describe how thought experiments work for me.

Right now I’m still spending some time with the speed of light and with electromagnetic waves, such as from a radio, since both propagate at the speed we call c.   It is easy to visualize a radio wave as a wave because we have always called it that: radio wave.  Duh…, and something radiating in all directions from an antenna is more of a reminder of waves in a pond after we toss a rock in.  But if photons are discrete and quantized (but sometimes seem to act as waves), how do you visualize a radio wave as a quantizable entity? 

Photons at Radio Frequencies 

If light and radio are both in the same electromagnetic spectrum, just when do you stop quantizing and start waving?  Stop photoning and start rippling?  Can you just get rid of the waving altogether and talk about photons at any frequency?  The object of this thought experiment is to start with a simple radio wave and see if it can be described as a photon eventually.   In other words, find out if all electromagnetic waves are photons and maybe even decide how big they are.   After all, if they can be shown to be photons always, then the quantum weirdness could explain lots of things, including light diffraction and interference at radio and lower frequencies in a different way than as a wave – particles even.  The object is to take a whack at this duality thing physicists are hung up on.

I am visualizing first a rather coherent radio signal (such as from a radio transmitter generating its carrier frequency) from a typical antenna as it expands in a sphere or bubble front.  I’m thinking of the very first cycle after the carrier is turned on, but it could apply to any peak in the signal as it propagates outward.  The leading edge of the bubble (or any individual peak) as I see it, is an equal-strength signal that covers the surface.    I am visualizing on that bubble (on the surface) countless whorls of small fields rotating in opposite directions and in close proximity to each other.   (I’ve just made them up for thought purposes, hoping that they can become photons later.)

For example, pick one of the circular whorls and it is rotating clockwise and all around it on every side are other whorls/fields rotating counterclockwise, all the same size whatever that is.  Adjacent to any of those you pick are small fields rotating clockwise, the pattern being like a polka-dotted balloon with the black dots rotating one way and the white dots rotating the other.   Between these whorls, the fields are moving in the same direction on all sides.    For example, the one on the left is spinning clockwise and the one next to it on the right is spinning counter clockwise.  In between the whorls, the fields are both moving down – same direction.   The same thing applies for the fields above and below, adjacent fields moving in the same direction.  So far, so good.  These whorls are helping each other out as they move along.

Now, I look at the small rotating field and realize that since the bubble is moving at the speed of light, the rotating field, if it had a crayon, cannot draw a line on the bubble at all, or it would be doing so at faster than the speed of light. Therefore, as each point of the rotating field is drawn on the surface of the bubble, it immediately falls behind the bubble and describes a spiral arc in space that, when looked at in profile, from the top and from the side, could be the sinusoidal magnetic field and its companion electric field that we detect as the field passes us. Any following energy such as for a continuous signal would fall into step with the leading bubble, describing subsequent bubbles behind the first one, but in sync. For now, I am still looking at a single cycle and things are looking better for photons.

Thus, I see countless rotating fields dragging behind the bubble, the bubble that represents the front of the beginning of the radio signal.  I visualize that the size of the rotating fields do not change, but are related to the frequency of the carrier, such that the higher the frequency, the faster they rotate and the smaller they are.   The energy is related to the frequency by Planck’s constant as e = hf.   This means the faster they rotate, the greater the energy.  (Whatever energy these whorls have, it is exceedingly small, but there are lots of them.)  

Now, we need to do a little head scratching.  Can we speculate as to the size of the whorls?  I think we can establish the maximum size of each whorl by assuming that if these are actually photons, then the energy contained in each photon is located in a flattened disk due to relativistic effects as in my drawing in “Speed of Light Regulated“.   If it is rotating around the whorl as in our thought experiment, then no part of the rotating photon can exceed the speed of light.  Therefore, the trip around the circumference of the whorl cannot be faster than the speed of light.

We also have decided to go down a particular path of our thought experiment by assuming that the whorl rotates at the same rate as the frequency of the carrier and so makes a single turn in one wavelength, λ.  We know that  λ=c/f  and also that the circumference = Πd =  λ.   or d = λ/Π.  The diameter of the whorl can’t be more than the wavelength divided by pi.  For a blue photon which has a wavelength of 450nm, the diameter would be d= 143 nm which is quite small, about 1/3 of the wavelength.   For a radio wave of 105 mhz the photon can’t be larger than  0.9 meters, about 1 yard, still about 1/3 of the wavelength, but about 630,000 times larger than for a blue photon.  

There is nothing to say that there can’t be billions upon billions of these photons overlapping each other at every point of the bubble.   In fact, there has to be.   Energy is being poured into the antenna and the output is billions upon billions of photons in ever expanding bubbles.  A photon has energy that we can calculate as e = hf, but h is very small, 6.26×10^-34 joules sec.   For a blue photon this is e = 4.2×10^-14 joules and for a 105mhz photon, e = 6.3 x 10^-28 joules, which is much much smaller.   To put this into perspective it would take 5400 x 10^27 photons (105mh photons) to make one watt-hour of energy.    That’s 5400 billion billion billion photons (roughly) for each watt hour! 

As our bubble expands, the surface “stretches,”  and it is that stretching, as the surface field in dynamically expanding, that causes the field to eventually separate into individual photons as the signal strength falls over huge distances and the wave identity is forever lost – all we have left is photons to try to detect.  The whorls represent in my visualization, the photon/particle aspect of the wave, as the wave is separated into compact quantum induced by the need to tightly spin along the bubble front, each whorl being my visualization of the photon.  

As the field further expands, the various quantum (whorls) begin to separate and the interaction with its neighbors becomes less distinct. Each quantum continues to have the same energy but its neighbors contribute less and less to its effect when exposed to a detector, unless lenses or antennas are used.

If we look at the field as it arrives at a detector (say an antenna), we detect the arrival of the photons as energy buildup on the antenna from one of the peaks involving billions of photons of the carrier followed by a decrease in signal and then a rise to the next peak.  The photon, being on the same order of magnitude as the detecting antenna (by design of the antenna based on electromagnetic theory, not photon theory) is easily captured, but billions upon billions need to arrive in order to make a good signal.   Maybe this dualality of wave / particle can be moved to quantum only – particles.

Enough is enough.  The thought experiment has run its course and it is time to have someone else pick it apart or perhaps add to it.  Well…. after all, it is just a thought experiment, but it’s mine and I’ve now written it down for others to consider or pick at – which should be an easy task.  

Oldtimer

Speed of light regulated

Speed of light regulated

What determines the speed of light? We know that it is a limiting factor for all physical objects. We have heard it time and again – nothing goes faster than c! Nothing.   Can we determine why it is regulated to c?  I think we can.  It is all a matter of relativity.

Photon in FligthSuppose we consider the idea that the photon is disk-shaped due to space distortion.  (See figure at left) The photon is traveling at the speed of light and the space distortion equations tell us that, from our perspective, the photon’s dimensions in the direction of travel are greatly shortened, essentially like a very thin pancake set perpendicular to the direction of travel.

We know that the photon is a ball of energy related to its frequency and we know that the frequency determines the color of light that we can actually detect with our eyes. A blue photon has both a higher frequency and energy than a red photon. All the energy is confined to that flat pancake moving along at the speed of light, c.

Now we come to a slight separation from the earlier argument that the clock of the photon is stopped and nothing wiggles in a photon with a stopped clock. That is, in my opinion, true for the photon, but we are talking about the photon here from an observer’s point of view, not the photon’s perspective.  From the observer’s point of view, the photon moves with measurable velocity, measurable frequency, measurable energy, and thus potentially real live vibrational modes as seen by a clever observer. The time experienced by the photon is still zero from start to finish of its journey, but the observer still knows it is moving at a particular pace and also vibrating as it goes.

The photon cannot vibrate in the front to back direction because to do so implies that the vibration mode that goes toward the back lags behind and then it could never catch up without exceeding the speed of light. This implies that the photon vibrates from side to side or possibly either way around the rim of the disk and never front to back (well, maybe a very little, as explained later). The ripples in the disk are shown greatly magnified in the figure of the photon in flight above. Vertically polarized photons vibrate from rim to rim in a vertical fashion, horizontally polarized vibrate side-to-side and circular polarized photons vibrate around the rim, to and fro, and can even be lopsided a little producing an elliptical polarization.  These types of polarization exist in our real world and we can separate photons with various filters. prisims, and crystals.

Now let us suppose that we consider the vibrational modes of the disk in a little more detail. It seems that any vibration would cause at least some ripples along the disk, and that these ripples must involve at least some bunching of energy producing some motion front to back. Suppose these ripples are constrained to some minimum amplitude in order to even exist.  Could it be that these ripples actually limit the speed of the photon to some factor that actually defines c?   They can.

In other words, if the speed of the photon were to try to increase beyond the speed of light, as seen by our (any) frame of reference, the continuing shortening of the disk would reduce the amplitude of the ripples and potentially slow the photon back down to a speed where the ripples can still exist in our frame of reference. This provides a theory of how the speed of light is established and limited to a particular speed, “the speed of light”, for a photon. The speed of light is about 299,792,458 meters per second, usually symbolized by the letter “c”.

My thought is that when a photon or other particle is emitted, it probably takes off at the highest possible speed that is limited by the speed at which it can still maintain vibrational modes that can exist within an observer’s frame of reference. This is the speed of light as we know it and the regulator is the relativistic shortening of the disk in the direction of travel as seen by the observer. This shortening reduces the amplitude to a point that is sustainable for the energy it contains. If a photon can vibrate longitudinally, it would still be limited in amplitude to the size constrained by the disk in the same way described above, essentially very little, and regulated by the speed. The photon will always go at the maximum speed it can maintain (and no faster) within a given frame of reference. 

Why photons all travel at the same speed 

So why do all photons travel at the same speed?  Even for two observers traveling in differnt directions both measuring the same speed for a photon crusing by?  First lets consider some facts:  Blue light has a frequency, f, entered on 7.88×10^14 HZ and a corresponding energy e of 5.22 10^ -19 Joules. Red light has a frequency centered on 3.79×10^14 HZ and a corresponding energy e of 2.373 x 10^-19 Joules. Since they have different energies and different frequencies, would they not reach that equilibrium at different speeds?

For the answer, consider this:  The energy and frequency of all photons are related to a simple constant, e= hf.   Where h= Planck’s constant= 6.6262*10 ^-34 J s (Joule second).  So the relationship of the energy of photon to its frequency is a constant.

Or put another way, h = e/f for all photons. The ratio of the energy of a photon to its frequency is a constant for all photons. Thus we can see that the sustainable amplitude is somehow related to h and all photons are regulated to the same speed, which we measure as c in any frame of reference.   For example, if you divide the frequency into the energy for the blue and then the red light photons above, the ratio comes out the same.   The result is h, a constant for all photons.   These relationships are well known in the physics world.

However, the frame of reference is a key element, which means that the regulation to c takes place in any frame of reference because the shortening of the disk is related to the speed within the reference of the observer (any observer and all observers), and thus become regulated to c in all frames of reference. If the frame of reference were within a spaceship traveling at near relativistic speed and attempting to measure the speed of a photon going in its direction, the photon’s speed would still be c in respect to the spaceship. The length contraction relative to the spaceship would just be enough to regulate the speed of light measured by the spaceship to agree with the speed observed on earth.

There is a little of cart before the horse-trading going on here. The equations for space distortion and for time dilation both involve the square root of a term that would be a negative number if the photon exceeded the speed of light. In order for us to consider that the photon might even try to go faster than the speed of light, the equation would need some modification to make things right. It might well be that in order for the photon to reach c it might initially slip into “superluminal” speed, but it would quickly be brought back to within the speed bounds by the disk shortening along the path of flight and the reduction of the amplitude of the energy waves in the disk, the shortening taking place in the frame of reference of the measurer/observer.  Even when there are no observers and no measurement taking place, the photon is not alone.  Other particle exist, even in a vaccum, virtual particles for example.  These make up a frame of reference too, so the photon is always locked in to c. 

All photons strive to go faster than c all the time, but are held back by the relativistic effect of space shortening’s effect on the need to vibrate.

This latter discussion begs a new question. If the vibrational modes could somehow be frozen so that they do not need to vibrate in flight as we observe them, could they then travel at an unregulated speed beyond the speed of light? Consider a particle that starts out at absolute zero. In that case all the parts are locked together and nothing moves and therefore has no vibration to sustain. What is to regulate the speed of that particle? Can we then reach superluminal speeds for such a particle?  I don’t think so because to get it up to speed, energy must be applied.  In the case of a photon, the energy comes from the change in states of an electron around an atom or a collision of some sort that generates a photon.  Once we have energy for a massless particle, it has to cruise along at c.

It may be possible that a photon in flight passing thorough from another dimension/universe might have motion relative to us moving so fast that there is no effective vibration taking place during the time of its passage, effectively frozen during its passage.   Such a particle might zip by at superlumal speed.  Of course we would never know it passed unless it hit something on the way.  Then we would have a mess.  

Physicists call hypothetical particles that travel at superlumal speeds tachyons, (hypothetical so far, that is).

There is one other consideration that acts as a speed regulator.  Something I hinted at above.   c is the speed at which the time and distance experienced by a photon reduces to zero.  I stated that a photon always strives to go faster than c.   Each time it does, it slips into imaginary time and pops back to c, and has to stay there.   Look at it another way.  The photon traveling at c arrives the instant it leaves (from the photon’s perspective).  If it went any faster than c, would it arrive before it left?  I don’t think so and so the photon cannot go any faster.

Hopefully I’ve given you something to think about.  

Oldtimer

Article and drawing, Copyright 2006, 2007,

James A. Tabb
 

Time Zero – A real Place?

“Time Zero – Ctime”

I would like to discuss a few other things about photons and also very high speed particles and their implications for a special point in time.  Some of these are just thought experiments and may have no basis for a new theory, but some of you may find it interesting at least and perhaps there is some promise of truth in them.

Since the photon experiences zero time during flight, it would be nice to know what is actually going on within the photon during the possibly billions of years of its flight. We know that near the speed of light, time slows dramatically and that a spacewoman in a space ship at near light speed would experience time as if it passes normally, but a stationary observer would see things quite differently. A clock on the wall continues to tick off regular seconds to her while her brother on earth gets older at a much faster rate, all the while knowing that her clock is going very slowly and she is staying young as he grows old.

But a photon is going much faster than a space ship ever can. The entire time of flight is reduced to zero so nothing can happen within the photon during flight.  The flight ends as soon as it begins for the photon. Yet we know there is a finite flight time from our observer perspective, sometimes billions of years for flight, as we see the same photon.

An interesting point is that the photon is capable of living forever because it cannot age if time is stopped, and in cloud chamber experiments we can measure the lifetime of some collision reactions only because the time of reaction is slowed for a high-speed particle due to time dilation. Time dilation near or at c is a real thing.

Yet we know that there is a finite and measurable time of flight from there to here from our perspective, and that a photon, if it has a frequency associated with it should vibrate hundreds of times during each foot of travel.  That is, if we believe it is still vibrating and not frozen as well. When it lands we know that its frequency is related to its energy and thus its color.  Does the photon actually experience this vibration, or does it all occur only when it starts and again when it encounters an obstacle that slows it down (such as within a crystal, or passage through water), or when it changes direction such as during a bounce off of a mirror… or does it occur again only at the moment of destruction, or as it melds around a small object?

We know that the emission of a photon is related to the change in energy states of an electron and both the energy and the frequency of the photon are related to that change of state. So the frequency is a physical attribute of the photon. We aren’t certain what exactly is going on since there are the contradictory facts that the clock of a photon does not change during flight, yet significant time elapses externally, and a photon has vibrational modes.  We also know that the phase doesn’t change, so the implication there is that no vibration actually takes place.  Is something else going on?

Ctime

Here is a new thought. If the time experienced by a photon is zero, where is the photon during the time of its flight? Is there such a time (physicists call it null time) and is it possibly a real place, a relativistic time zero?  Let me call it “ctime” for simplicity, time at speed c.  Ctime would then be where the photon is during flight, a place where time is stopped. Nothing happens, nothing moves, at least not within the photon. The photon moves through space, and doesn’t even vibrate, but the photon experiences nothing because it is embedded in ctime.

Now, suppose all ctimes are the same!  A special point located in relativistic time.    Not the same space-time, but the same time-space, a special place where time is stopped due to relativity, all connected by the null paths.  Photons that have paths that don’t cross would still be in the same place in time – ctime – throughout their flight, but would not ever occupy the same space.  

Photons that have paths that do cross would occupy the same space and same time at the crossing point even if they crossed several decades apart because both would be in ctime and both pass through the same space at some point. The physical times we calculate at the crossing (different) would not be the same as the ctime the photons would experience (same).  Ctime would exist for the photon throughout its existence and even afterward, at least until the null path was disturbed by another photon crossing the same null path.    I say that because the time is frozen and doesn’t change and therefore any point in the null path that is not disturbed remains undisturbed even if the last point of that path is a screen or detector or a piece of rock or someone’s eye.  How can the previous points know if time does not change for those points all stuck in ctime?

Would such photons interfere with each other? In other words, is it possible for a photon that passes through a slit today to actually interfere with another photon that comes through tomorrow?  They would both pass through the same space at the same time in timespace – ctime.  I think it is theoretically possible and thus becomes an alternate way to explain some quantum weirdness effects.  Certainly, it seems more possible than multiple universes.  When does the ctime collapse for a photon? If it is a real place in time, does it even know that the photon has ceased to exist?  For interference to occur in a slit due to ctime, it must continue to exist until at least something physical cuts through the spacetime of the path, such as the placement of a detector or the disturbance of another photon trying to occupy the same space and ctime.  Even then if the detector is removed before the second photon comes through, ctime (at the photon crossing point) is undisturbed unless the detector happens to disturb the point that the photon paths cross, normally some point well past the detector placement.

Let’s go over that again, slowly.  A photon is emitted.  It immediately stops all internal activity and is, in effect in suspended animation until it hits something.  For the photon, the distance of the flight path is shortened to zero and time stops.   Space and time are severely warped.  For the photon, the entire trip from a far galaxy is reduced to zero time and zero distance.  Both space and time are reduced to dots.   Space and time are warped that much.

We can conceive of space being zero distance, a dot, and create a very simple drawing with both ends of the path conjoined at a dot on the paper.  But what about time?   If time is reduced to a dot, where is it?   What I’m suggesting is that the time dot is the same place in time for all photons.  That place in time is what I’m calling ctime.    However, the time-space dot occupies the entire length of the flight path and continues to exist there until each point is later disturbed.   A null path consisting of a continuous line of space-ctime, like a deep valley in time that the photon passes through, warped by its speed.  The valley hangs around in time (ctime) even after the particle ceases to exist at every point in space, because time does not change there.

If the paths of two photons cross, but at different times as we measure it,  then the two photons exist in the same space, but not the same time (as we measure it) – different space-times.  Except… it is my suggestion that they do exist at the same time (for the photons) at the same space-ctime, and never come out of it until that particular space at the crossing point is disturbed.   It would be an alternate explanation for the interference of photons that are emitted one at a time over a period of days or weeks.  

The first photon through a given slot occupies a particular space and is also hung up in ctime.   Its presence in ctime for that space exists even after the photon hits the target.   Each point in the path of the photon experiences the photon in passing as a warp in time.  No information is possible for the past or the future of the photon – and so each point is left with a warped time that is frozen there in ctime.   When another photon happens to cross that same space later, the ctimes are also crossed at that same point and thus the newer photon is shaken by the occurrence just as if it had brushed up against the earlier one.   Interference!   If a slot is closed, then the previous photon ctime paths are disturbed by the closing and no interference occurs when a newer photon comes along later. 

This has implications for high-speed particles with mass as well.  As they approach relativistic speeds, there is time and space distortion for these particles as well.  Electrons and even much heavier particles show diffraction patterns and also show interference patterns even when fired one at a time.  In their cases, the valley of ctime would not be as deep and possibly not persist as long, but space and time are warped just the same.  The interference of one particle with another at a later time may be just the same effect – an existence of a ctime in a not-quite null path left by one particle that disturbs one coming along later.  

An experiment might be constructed such that a paddle sweeps through the entire area where photon interference might occur.  The sweeps to occur between each photon emission.  Such an experiment  might prove this theory if the result is no interference pattern buildup over time when the paddle is used but interference does occur when the paddle is not in use.  I’m suggesting a simple paddle that is wide enough to span the multiple interference points and placed normal to the screen, a paddle that mechanically sweeps through and disturbs the ctimes so that no photon crosses another’s undisturbed ctime.  A paddle next to the slits will not do the trick, so I doubt that this experiment has been done before.  A paddle that only sweeps some of the crossing points would in effect blank out some of the interference pattern and not others.   A real test.

Copyright 2007 by James A. Tabb

Marietta, Ga. 
 

Fun with time travel

Fun with Time Travel

worm hole from Wikipedia

 Wormhole drawing from Wikipedia

There has much been written about wormholes being used potentially for time travel and popularized by science movies and novels, Contact, Farscape, Stargate. and Sliders, for examples.    It is a familiar topic of some top physicists and not excluded by the Theory of Relativity.

Create a wormhole, drag one end “E” to a vast gravitational source such as a neutron star and wait.   Time for the dragged end will slow down dramatically in comparison with the other end located far from the gravitational source.   This is due to an intense gravitational field’s effect on time – it slows it down, it doesn’t age as fast as the other end.    Then drag the “slow time” end “E” back to the lab and set it beside the “real time”, “L”, and you have a time machine. with ends labeled E on the slow end and  L on the fast.  

If some future civilization could somehow do such a thing, the speculation is that if someone tossed a ball into the L (Late) end, it will come out the E (Early) end before it goes in the L end.   Time travel, back to the past.

Now that may sound confusing, but consider this.  If the E end were put in the gravitational field on July 11, 2007, it would remain at July 11 until it was removed on July 12 and then be a  day early forever.    A ball put into the L end on July 14 would come out on July 13 at E, and a ball put into the E end on July 14 would come out a day later on July 15 at L.   Both ends are at the same date as you sit there watching it, but an object put into either end responds as if it were moving through time.

Wormhole

Looking into a wormhole  – don’t blame me if you get dizzy.

Now there is a situation that needs some explaining.  The person sitting there observing both ends, which are now together, is living only in the “real time” which we call fast time, but it is early time for himself a day later.   He can see both ends at once and both ends of the wormhole are visible at the same time, the one on the left labeled E and the one on the right labeled L.     Suppose he sees a ball with his signature on it pop out of the hole at E.   That implies that someone (presumably him) will put a ball into the L end the next day.    Suppose he decides to lock the lab and prevent someone from doing that.    Where did the ball come from?

Physicists who may accept the possibility of time travel have taken great pains to explain why an action at L cannot be changed by something coming out of E. For example, you can’t go into the L end and come out of E and prevent yourself from going in.  Or kill yourself in the past, or let the ball you toss in be knocked off course by the ball coming out, or lock the door to prevent the ball from going into the L end.  So the answer to the question, “where did the ball come from” is this:  he can’t prevent the ball from being put in the next day if it has already come out early.  The future is already defined for that event.  If he could prevent the ball from going in, it would not have come out early.  Something would intervene or someone from an parallel universe would have to have done it.  Things that come out the E end define what goes into the L end later.  Future foretold.

It occurs to me that it would be apparent soon after it was created whether and how well it works, and if a person could survive the trip or not. It is clear to most physicists that such a machine cannot go further into the past than when the end was dragged into the gravity source because the dragging can only be done in the present.   Merely dragging it does not open a portal to an earlier time than when it was put into the gravitational source.

To determine if and how well it works, you only need to observe the E end. If a ball comes out, it works for some objects. If hamburger like meat or juices come out wearing a name tag, it would not be wise to later go in yourself.  But you would not be able to prevent someone wearing that tag from going in.   His or her fate is sealed.  If your name is on the tag, give it to your worst enemy quick!

Once the end is dragged away, it might work, but it can only begin then. Lets say that the end E is dragged to the lab and placed beside L before any experimenting is done, and the time differential had been built up to 1 hour between the ends. Soon after the two ends are brought near each other, the physicist standing nearby might see a ball pop out with his signature on it.  “It works!”, he shouts.  At that moment, before he ever starts his experimenting, he knows it works with balls. Then he puts the ball back in. Where did the first ball come from? Who signed it? Does the ball come out again? When?

Some Answers:

The first ball came from someone an hour later who puts in a ball previously signed by the physicist. It is the same ball, but cannot come out unless initiated an hour later by action by someone in the future, acting in their present, sending the ball to their past.

If the ball is put back into L, it can’t come out in the lab at E unless the physicist has waited at least an hour after the portal has been established, finds a ball somewhere, signs it and then puts it into L, such that it comes out while portal E is active and in the lab. The initial appearance of the ball at E requires a corresponding initial action at L an hour later.  Predestination.

If the physicist puts the ball back in immediately, it might come back out, but not in his or her laboratory unless the portal has been open in his lab for at least an hour. For example, the portal is only 5 minutes old when the first ball comes out (implying it was put in an hour from then) and if it is immediately put back in, it would be put in 55 minutes before the original one – before the portal is established and comes out somewhere along the dragged path preceding the first one he saw come out.  

In other words, if less than an hour, it must come out somewhere along the path that the port E was dragged through, and thus his evidence would be lost in space. In addition, an unsigned ball must be found, signed and put into the portal L prior to putting the first ball back in. To fail to do so would have meant the initiating event never happened and he/she would have no knowledge of it, much less a signed ball to admire.

The physicist must wait until enough time has elapsed that the time differential from E to L has elapsed (in this case 1 hour) to avoid losing the ball. The physicist must also initiate the process with a newly signed ball. This requires an hour’s wait the first time, but might not if, say two hours (or 48 hours) elapsed before the initial action is taken.

Then putting the ball back in would enable it to come around again and not be lost in space. However he would first have to find a ball and sign it to start the original process and such an action would have already resulted in earlier balls pouring out of the E end. 

Major Problem 

There is a major problem brought to light right here, but it was a problem from the beginning and just now evident.  Lets say that he just got the portals working and they are side by side.  He has a signed ball on the table waiting for the hour to elapse and a signed ball unexpectedly comes out of E.  Now he has two signed balls!   Matter Created?   Energy created?   Violations of energy conservation all over the place!   Can he go into the ball manufacturing business by putting the balls back in quickly and getting a never ending supply of perfectly identical balls?   I don’t think so!  If he could, he should find a large carat diamond and switch to that.   They would pour out of E by the shovel full after a few minutes!  First 1 then 2 then 4 then 16 until they started to pile up and he is shoveling them back in as fast as possible.   Not going to happen!   Whatever happens, energy, and thus mass, and thus new balls (or diamonds) are not got going to be created.  No matter what. 

The answer may be that the ends cannot be placed close enough together that light can go from one to the other within the time frame of the experimental time warp.  That would put a real damper on the project, although it would work as a good portal between far flung space stations.  Set two of them up with a time delay of the light travel time and have one with E at one end and L at the other, then a second set of L at the first end and E at the other.  Then someone could go from one star to the other and back in a matter of seconds, round trip.   The traveler could never be in the same place at the same time.

Lets say this is one sharp physicist that thought that this paradox of having matter creation would prevent it from working at all, so he put his original signed ball into a box and never opened it.   Did it cease to exist?  Can he use the ball that came out of E to put back into L an hour later?   If so, who signed that ball and when?  He only has one ball to deal with and he carefully reuses it no often than once an hour but we still have a major problem to deal with when he opens that box.    Actually the answer to all these is this:  If he puts the first signed ball into the box, seals it, and never opens it, he will never get a signed ball out of E the first time.  

We just can’t deal with that situation logically.  So lets move on to another scenario and see if we do any better.   Suppose somehow the balls can co-exist and if you put one in now, it comes out an hour earlier, no problem.  Suppose our physicist is very conservative, thinks about things thoroughly and decides in advance to wait 3 hours before putting in the first ball. If he actually did wait for the 3d hour, it would come out at the 2d hour.   It would still be matter created because he has at that time still not put the first one in, so he has two.  The happy physicist thinking “this is neat!” might be tempted to put both back in immediately.   He can’t.  Somehow he can’t because to do so would have meant that he would have had 3 at the first hour (the original plus the 2 from the second hour) and he did not.    As soon as one comes out, the future of the portal at L is fixed for that event.   Unless parallel universes come into play.  The portals in different but parallel universes.   You would never know unless the laws and/or sequence of history were different and your ball came back signed by someone else. 

Each appearance implies that the future event will take place.  If a new ball  appears at hour 2 at E,  that ball is destined to be put into L an hour later. 

The above sequence may seem like the past is forcing the future to comply with past events.   Deterministic.  Maybe that is already happening.  Everything we do is pretty much dictated by our past actions.   We have very little room to maneuver.  

“Whenever the future repeats itself the price goes up.*”   Maybe we just can’t afford a time machine.  

 * The original version of this quote is more than 4000 years old!  Future foretold!

Time machine lost! 

When it comes down to the bottom line, a time machine for travel into the past is an energy and matter creator and would have to violate a fundamental law.  Travel into the future also violates the same law because matter and energy in the past “disappears” when it enters the portal. 

During the transition from the past to the future, the universe would have less matter and energy than before. 

Sorry folks, but we aren’t going either way.

Oldtimer

(Reliving the past)

What’s Up with Gravity? part 2

In part 1, I talked about fields and field gradients.  I want to expand on that just a little because I believe that it is key to action-at-a-distance and gravitational forces in particular, and I think I can make it a little clearer.

We know that Einstein’s General Theory of Relativity tells us that gravity is a result of space-time warping in the presence of a mass, often shown in figures as a membrane with a large body (such as the sun) in the middle, sitting in a depression in the membrane and a smaller body (such as the earth) circling around in a smaller depression in the same membrane.  I mentioned that we humans have a tough time getting our mind around that situation when it comes to our own bodies in the earth’s gravitational field.  When we are standing on firm ground, where is the membrane and what is being warped?

I also mentioned that a mass is surrounded by a field and we can draw a circle or sphere around that mass where the field strength (gravity) is the same at all points on the circle or sphere and additional circles around points further out for smaller and smaller strengths.   The result is a series of shells that stretch out to infinity, or at least as far as light has traveled since that mass was placed in that position.  This is different than the normal depiction of fields as being lines connecting two masses along the lines of force.  I’m convinced that my shell drawing of equal strength points will be easier to understand.

gravity figures 1a and 1b

The figure above illustrates two situations.  Figure 1a shows two masses that are different sizes and also far apart.   The field lines are drawn around each for some easily measurable strengths and the drawing shows only those fields that have sufficient strength to measure on our crude meter.  In fact the fields go on forever in ever-decreasing strength.  If we had a better meter, we could draw lines all the way between them and beyond.

The fields in figure 1a are essentially circles around each mass because the masses are positioned so far apart that we can’t discern any distortion in the circles.

The fields in figure 1b show a situation where the smaller mass has been placed closer to the larger one and overlap the outer two measurement circles of each.   The figure shows that the fields merge.   The outer rings of both masses were the same strength before and still are because we are measuring the field at equal strength at the minimum reading we can take with our poor meter.  

Notice that the outer ring and the one just inside of it have now combined for the two masses and as a result of the added strength moved out a little further, that is, bulged further out on the far side of the small mass.  In addition, the 3d ring of the bigger mass has also bulged a little due to the movement of the others.   It should be clear that the fields in the bulged areas are not stronger, but are the same strength as before, but now our measurements of that strength are further out.

The two masses are now part of one system  and the rings around them are distorted a little at all points as they now form equal fields around the center of gravity of the two masses.  That is not really apparent in my simplified drawings, but the system now acts as a larger mass to other masses (not shown) further out.

Our body is a system of masses that act like the system above but infinitely more complicated as the fields of every molecule of our body interacts with every other and with fields external.  However, we can now visualize our body as being the smaller mass and the earth a similar system of masses much bigger.   When we are on the earth, our mass interacts with and modifies the earth’s field ever so slightly (and the earth ours), but sufficient to feel the effects due to the enormous mass of the earth.

There is still a gradient across the two masses (the fields on each side of it are different sizes), and a tension across the gradient that tends to pull the masses together.  Actually, it is not clear if it is a pull or a push.  Is the larger mass pulling the smaller one or is the enhanced field that has now moved out behind the smaller one now giving it a slight push?  To be complete we have to say the small one is also pulling on the larger one or possibly the field behind the larger one is pushing it toward the smaller one.  Indeed the field behind the larger one has also moved out ever so slightly in the same manner as shown for the smaller one, but not discernable from the drawing.

From the drawing, I’m inclined to say they are being pushed together, in the same manner that a rubber band wrapped around two fingers pushes the fingers together.    

How did the fields get there in the first place?

There is no question that the fields are there.   But is the gravitational field moving at the speed of light outward from the mass?  The short answer to the last part is no.   The fields as I explain them are essentially static.  They are modulated by disturbances within the core of the mass (quarks, gluons flying around) but the field strength is essentially static except as modified by the fields of other masses elsewhere in the universe.  That modulation of the fields goes on constantly in ways we could never compute.   The modulation or changes in the field do move at the speed of light, but the lines drawn around our figure do not change except as other masses move and influence the fields.

The answer to the title question “How did the fields get there in the first place?” is this:  They have been there since the mass was created.   For the atomic scale, we are talking about when the quarks and gluons first condensed out of the big bang expansion and atoms and other particles were formed.   Each atom and each particle that has mass had a field established at that time and it has followed them around ever since.   On a larger scale, as atoms combined into molecules and dirt and other debris combined into lumps and moons, the systems of fields depicted in figure 1b began to grow as well.    Eventually a sun was formed, an earth was formed and we were born into it.  Our masses accumulate and become a smaller system of our own.

Thus we are composed of atoms from the creation and from the deaths of stars which may have flung our larger atoms and their attendant fields out into space to end up as us with enough intelligence to understand a few things about our world, including a little about gravity.

Where does mass come from?

If gravity is a function of mass, where does mass come from?   Actually there is no problem here:  if E = mc^2  then it can be restated as m = E/C^2.   Simply put, mass is a form of infinitely condensed energy.   Release the energy and you have an atomic bomb.   The components of an atom really have very little individual mass among them.  All of the mass is ultimately from the energy within.   The quarks and gluons and other stuff inside are moving about in a wildly speedy fashion, like a whirling dervish.   In effect, gravity is more of a function of energy than any real matter.  

The point of mentioning this is that I believe that the gravity fields that were established at the beginning, shortly after the big bang, are the left-over effects of energy being condensed into matter – huge amounts of energy being squeezed or formed out of the soup of creation during the bang and leaving lonely fields stretching out forever and following that condensed energy wherever it goes.  So what holds us down is essentially the debris of locked up energy condensed when our atoms were created, long before the earth was formed and eventually accumulated into the ground we walk on. 

Copyright 2007 by James A. Tabb

Marietta, Ga.