Tag Archives: photon

Thought Experiment – Photons up Close

Recently I published a paper on radio frequency photons:  Thought Experiment- Photons at Radio Frequencies in which I described a photon from the time of emission from a radio antenna as it propagated outward until it separated into photons and was later captured by an antenna.   

What I found was that the photon started as a whorl or vortex, if you wish, traveling initially in patterns of counter-rotating fields that eventually became identified as individual photons.  These whorls/vortexes have a specific size (diameter) and energy defined by the frequency of the emission.   A point on the rotating photon describes sinusoidal patterns that fall behind the photon in the classic electromagnetic patterns.   The thought experiment allowed me to calculate the maximum diameter of the photon at 105 mhz to be about 0.9 meters and a visible-light blue photon to have a maximum diameter of 143 nm.

Having learned from that, I decided to do some more thinking about photons in general.  What applies at radio frequencies should also apply to photons of light and higher energies.   It occurs to me that we can learn a lot about photons by experimenting with them at radio frequencies.   We know that radio signals diffract around sharp structures and even exhibit double slit diffraction if passed between sets of tall structures with sharp edges.   I don’t know of any single-photon experiments at radio frequencies but I suspect that the results would be the same; diffraction still occurs in which the photon interferes with itself.  

Having looked at it from a whorl or vortex photon standpoint (as opposed to a wave standpoint), it is easy to imagine a photon nearly 1 meter in diameter passing around both sides of a telephone pole or being pulled around a corner of a building as one edge drags on the sharp edge there.    

The same thing should happen to a red, blue or green photon encountering superfine wires or sharp edges of a razor blade or slit.  

Not having the equipment nor the results of any such experiments at radio frequencies, I’m going to move this into a thought experiment and follow a photon up close, drawing on the earlier radio frequency thought experiment and adding details that agree with what we know about light photons and see where we go.  In this case I’ll consider a 450 nm blue photon.   I mention a blue photon only to help differentiate it from a radio frequency photon in the following discussion.  It doesn’t matter what it is, they should behave the same.

Blue Photon

 by James Tabb  (ripples greatly exaggerated)

A blue photon is emitted when a source (the emitter) such as, for example an electron that changes energy levels from a higher level to a lower one, shedding the excess energy as a photon.     I imagine it like a sudden elastic-like release of energy in which the energy packet moves away instantly to light speed.  If the packet follows Einstein’s equations (see graphic below) for space distortion, then a blue photon is immediately flattened into a disk of 143 nm diameter (see graphic above) because the lengthwise direction shrinks to zero at velocity c.   (This diameter was derived as d = λ/Π from my previous article and depends on the wavelength)

In my description of a radio photon, the energy in the packet is rotating around the perimeter of the packet at c as well as moving away from the emitter at c.   The limit of c in the circular direction also limits the diameter of the packet.

I can picture photons that slosh back and forth left to right or up and down or in elliptical shapes.   All of these shapes and directional sloshing, and rotation are equivalent to various polarization modes – vertical, horizontal, elliptical and circular.   I can also imagine that these shapes/polarizations are created as photons are beaten into these modes while passing though lattices or slits that encourage the photon to go into one mode or the other or to filter out those going in the wrong direction.   I can begin to see that when photons at light wavelengths are thought of as rotating whorls, it becomes easier to think of how this all works.   None of the modes involve back and forth motion because to do so, the portion going backward would never catch up to the forward mode or it would exceed c.   

Now that the photon has been emitted and begins its flight, we are purely in a relativistic mode.  Einsteins equations for space distortion and time dilation tell us that the path in front of the photon shrinks to zero and the time of flight shrinks to zero as well.   This has always raised a troubling problem because we know that some photons take billions of years to fly across the universe and move about 1 nanosecond a foot of travel.  

In order to resolve this problem, I’m now imagining an experiment in which an excellent clock is built into a special photon that starts when the photon is emitted and stops when it arrives. (Good luck reading it, but this is only a thought experiment, so I’m good to go.)  Perhaps the path is a round trip by way of a mirror or some sort of light pipe such that a timer triggered at the start point also stops again when the photon comes back. If the round trip is about 100 feet then you might expect the timer and the photon’s clock to both register about 100 nanoseconds more or less for the trip.

When the experiment is run, the photon’s clock is still zero when it arrives and the other timer does indeed read very close to 100 nanoseconds. The photon seems to have made the trip instantly whereas we measured a definite trip time that turns out to agree with the velocity of c for the photon throughout its trip.  I decided that is the correct outcome based on the time dilation equations of Einstein when using velocity = c. 

So we see that Einstein’s time dilation equation applies to the photon in its reference frame, not ours.  There are nuances here that we should consider for the photon:

(1) Since the distance the photon travels is zero, the time it takes is zero as well.  That is why the photon’s clock does not change.   Therefore, I claim that the space/time jump is instantaneous and therefore the landing point is defined at the moment the photon is created regardless of the distance between the two points.

(2) Since we know that the photon packet cannot go faster than c and by experiment, it does not arrive faster than c, it appears obvious to me that the instantaneous space jump is not completed instantly, only defined and virtually connected.  I visualize that for one brief moment, both ends of the path are (almost) connected; emitter to photon, photon to its destination through a zero length virtual path. The photon does not transfer its energy to the destination at that moment because the path is only a virtual one.

(3) I visualize the photon’s forward path shortened to zero, an effect which has everything forward to it virtually plastered to its nose, like a high powered telescope pulling an image up with infinate zoom capability.   All of space in front of it is distorted into a zero length path looking at a dot, its future landing point.   

(4) The photon immediately moves away from the emitter at light speed. As it does so, the path beside and behind the photon expands to its full length (the distance already traveled, not the total path) with a dot representing the destination and the entire remaining path virtually plastered to its nose.   A zero-length path separates the nose of the photon from the landing point. The path already traveled expands linearly as the photon moves away from the emitter along that path at a velocity of c.

(5) I claim that the photon’s zero-length virtual path is effectively connected all the way through, including all the mediums such as glass, water, vacuum, etc.  However, the photon only experiences the various mediums as the path expands as it moves along.  I make this claim because it explains all of the quantum weird effects that we see described in the literature and thus appears to be verified by experimental results.  My next paper will detail this for the reader.

The landing point only experiences the photon after the entire path is expanded to its full length. In the example, the starting and ending points are 100 feet apart with a mirror in between, but the entire distance between (for the photon) is zero and the time duration (for the photon) is also zero (with maybe a tiny tiny bump when it reverses at the mirror). For one brief instant, the emitter is connected to the photon and the photon to the mirror and back to the timer through two zero-length paths, but it is a virtual connection, not yet actually physically connected.

The mirror and landing point remains virtually attached to the nose of the photon which moves away from the emitter at light speed, c. The photon’s clock does not move and the photon does not age during the trip, but the photon arrives at the timer after 100 nanoseconds (our time) and transfers its energy to the timer’s detector.

(6) I also claim that all the possible paths to the destination are conjoined into one path that is impossibly thin and impossibly narrow, much like a series of plastic light pipes all melted into one path that has been drawn into a single extremely thin fiber.   This is a result of the fact that the distances to every point in the forward path is of zero length, and therefore all the paths are zero distance apart.

In effect the entire path is shrunk to zero length at the time of emission due to a severe warp in space. Zero length implies zero duration for the trip as well, and the photon is in (virtual) contact with the mirror (and also with the finish line) instantly, but the space it is in expands at the rate of c as it moves away from the emitter.

Everything in front of the photon is located as a dot in front of it. It experiences the mirror after 50 nanoseconds of travel time. The reflected photon is still stuck to the finish point as the space behind it expands throughout a second 50 nanosecond time lapse and the finish line timer feels the impact at the correct total 100 nanosecond time while the photons clock never moves.

The major point learned in this thought experiment is that the photon’s path and landing point is perfected at the time it is emitted whether the path is a few inches or a billion light years long due to the relativistic space/time warp. This is a major point in explaining why quantum weirdness is not really weird, as I will discuss later in a followup paper that clarifies the earlier posts on this subject.

Wormhole Concept 

I visualize the photon as entering a sort of wormhole, the difference is that the photon “sees” the entire path through the wormhole but does not crash through to the other side until the wormhole expands to the full length of what I call the “Long Way Around (LWA)” path. Unlike a wormhole, it is not a shortcut as it merely (as I call it) Defines the Path and Destination (DPD).  This concept also applies to any previously described wormhole – see my previous paper, Five Major Problems with Wormholes

Here is the important point: The photon in this wormhole punches through whatever path it takes instantly at the moment of creation and defines the DPD. Every point in the DPD is some measurable LWA distance that is experienced by the photon as the path expands during its transition along the path. The LWA includes any vacuum and non vacuum matter in its path such as glass, water or gas.

So now we have a real basis for explaining why quantum weirdness is not weird at all – it is all a matter of relativity, as I will explain in my followup paper.

Oldtimer

Copyright 2007  – James A. Tabb   (may be reproduced in full with full credits)

Virtual Particles – A new look at double slit weirdness

I was looking at a web site by Hitachi Global concerning “Advanced Research – Electron phase microscopy” today.   They have a neat movie based on the diagram of an electron microscope which you can find here:

(link to diagram)     http://www.hitachi.com/rd/research/em/doubleslit-f1.html

 These pictures are theirs and are copyrighted by them so all that can be done is show you the link.

Here is a link to their video of the results of a 30 minute run (sped up to just a minute or two):

http://www.hqrd.hitachi.co.jp/rd/moviee/doubleslite-n.wmv

They send electrons one at a time from the source, about 10 per second.  Those that make it around the rod are detected and displayed on a monitor.  

 After about 20 minutes, clear interference patterns develop on the monitor as shown in their video.   

The electrons are accelerated through 50,000 volts, and achieve velocities about 40% of the speed of light.

 These electrons appear to be passing simultaneously around the barrier and interfering with themselves.  Either that or they have some sort of lingering effect due to ctime as I posted in a recent article.   I have a new thought:

Virtual Particles

I believe that there is one obvious answer to such a weird quantum effect – virtual particles.   Photons and any particle achieving significant relativistic effects, such as high speed electrons, atoms, molecules, bucky balls, cats, and anything that can be raised to near the speed of light can also produce companion virtual particles – virtual photons, electrons, etc. when their flight paths are significantly disturbed.  (Well maybe not cats, but who knows?)   

We are getting into new theory here with a new thought experiment!   If an electron such as those in an electron microscope is accelerated to a high enough speed is then jostled by close encounter with a small barrier, it will generate an identical virtual electron on the other side of the barrier.  This applies to any particle raised to relativistic speeds.  If the other side of the barrier is closed off by a detector, then the virtual particle disappears without effect on either the detector or the original electron, being absorbed by the barrier along with the original electron.  If the barrier is open, however, it recombines with the electron after passing around the barrier to produce an interference with itself during the recombination process.

It is similar in effect to the process described in my Quantum Weirdness – Part 2 Double Slit Weirdness post whereby the photon melds around a slit.  Perhaps it is not a meld but a virtual photon recombination – the effect would be the same.

A photon, or any relativistic electron, or other particle jostled by the fields around atoms in a close encounter with the edges of a slit or other barrier would generate a virtual photon, electron or particle that would appear on the other side of the offending barrier and then recombine at a point downstream to cause an interference.   Barriers that block the other side would kill the virtual particle.   A particle that did not exist long enough to recombine with its generating particle would die without causing any effect on the offending detector or barrier.    Only particles that come close enough to be jostled by the fields of the barrier atoms would generate virtual particles on the other side.  Others not close enough to the barrier to be jostled by it would not create the virtual particles.

It is my thought that where there is such jostling, both the particle and its virtual particle might die in the edge of  the barrier if one or the other side were not open, and only those electrons that are far enough from the barrier to not create a virtual pair would continue through the open port to the screen, and thus not show any interference pattern.   

Only if both sides are open would a virtual pair survive a close encounter with a barrier and then be attracted together to recombine on a path toward a pattern maximum.   Scattering around the maximum would be a result of random spacing of near misses and pure chance.

It is another thought that if an electron is buffeted by a barrier and survives the trip but its virtual electron is lost in the material of the barrier, the electron that survives will still be affected by the virtual particle at the point of its destruction, perhaps its phase or displacement or both.   It just won’t show an interference pattern, but it would show some effect of the structure of the barrier material at the point the virtual particle is destroyed, making it possible to “see” the structure of the material within the barrier itself.  Maybe that is just a description of how an electron phase microscope actually works.  The phase is changed by the destruction of the virtual electron and that change depends on the structure at the point the virtual electron lands. 

Copyright 2007,

James A. Tabb

Marietta, Georgia

Thought Experiment – Photons at radio frequencies

I like to do thought experiments.   Many of them lead to dead ends, but I write most of them down anyway because I’ve found that very often I will go down another thought path and end up crossing an earlier one.  Then things get interesting.  The one below includes a thought experiment that dates to Fri, 25 Sep 1998, and I’ve updated it a little to my more recent thoughts.  If you have an idea, keep it around as it may become useful someday.  This one is mostly useful to describe how thought experiments work for me.

Right now I’m still spending some time with the speed of light and with electromagnetic waves, such as from a radio, since both propagate at the speed we call c.   It is easy to visualize a radio wave as a wave because we have always called it that: radio wave.  Duh…, and something radiating in all directions from an antenna is more of a reminder of waves in a pond after we toss a rock in.  But if photons are discrete and quantized (but sometimes seem to act as waves), how do you visualize a radio wave as a quantizable entity? 

Photons at Radio Frequencies 

If light and radio are both in the same electromagnetic spectrum, just when do you stop quantizing and start waving?  Stop photoning and start rippling?  Can you just get rid of the waving altogether and talk about photons at any frequency?  The object of this thought experiment is to start with a simple radio wave and see if it can be described as a photon eventually.   In other words, find out if all electromagnetic waves are photons and maybe even decide how big they are.   After all, if they can be shown to be photons always, then the quantum weirdness could explain lots of things, including light diffraction and interference at radio and lower frequencies in a different way than as a wave – particles even.  The object is to take a whack at this duality thing physicists are hung up on.

I am visualizing first a rather coherent radio signal (such as from a radio transmitter generating its carrier frequency) from a typical antenna as it expands in a sphere or bubble front.  I’m thinking of the very first cycle after the carrier is turned on, but it could apply to any peak in the signal as it propagates outward.  The leading edge of the bubble (or any individual peak) as I see it, is an equal-strength signal that covers the surface.    I am visualizing on that bubble (on the surface) countless whorls of small fields rotating in opposite directions and in close proximity to each other.   (I’ve just made them up for thought purposes, hoping that they can become photons later.)

For example, pick one of the circular whorls and it is rotating clockwise and all around it on every side are other whorls/fields rotating counterclockwise, all the same size whatever that is.  Adjacent to any of those you pick are small fields rotating clockwise, the pattern being like a polka-dotted balloon with the black dots rotating one way and the white dots rotating the other.   Between these whorls, the fields are moving in the same direction on all sides.    For example, the one on the left is spinning clockwise and the one next to it on the right is spinning counter clockwise.  In between the whorls, the fields are both moving down – same direction.   The same thing applies for the fields above and below, adjacent fields moving in the same direction.  So far, so good.  These whorls are helping each other out as they move along.

Now, I look at the small rotating field and realize that since the bubble is moving at the speed of light, the rotating field, if it had a crayon, cannot draw a line on the bubble at all, or it would be doing so at faster than the speed of light. Therefore, as each point of the rotating field is drawn on the surface of the bubble, it immediately falls behind the bubble and describes a spiral arc in space that, when looked at in profile, from the top and from the side, could be the sinusoidal magnetic field and its companion electric field that we detect as the field passes us. Any following energy such as for a continuous signal would fall into step with the leading bubble, describing subsequent bubbles behind the first one, but in sync. For now, I am still looking at a single cycle and things are looking better for photons.

Thus, I see countless rotating fields dragging behind the bubble, the bubble that represents the front of the beginning of the radio signal.  I visualize that the size of the rotating fields do not change, but are related to the frequency of the carrier, such that the higher the frequency, the faster they rotate and the smaller they are.   The energy is related to the frequency by Planck’s constant as e = hf.   This means the faster they rotate, the greater the energy.  (Whatever energy these whorls have, it is exceedingly small, but there are lots of them.)  

Now, we need to do a little head scratching.  Can we speculate as to the size of the whorls?  I think we can establish the maximum size of each whorl by assuming that if these are actually photons, then the energy contained in each photon is located in a flattened disk due to relativistic effects as in my drawing in “Speed of Light Regulated“.   If it is rotating around the whorl as in our thought experiment, then no part of the rotating photon can exceed the speed of light.  Therefore, the trip around the circumference of the whorl cannot be faster than the speed of light.

We also have decided to go down a particular path of our thought experiment by assuming that the whorl rotates at the same rate as the frequency of the carrier and so makes a single turn in one wavelength, λ.  We know that  λ=c/f  and also that the circumference = Πd =  λ.   or d = λ/Π.  The diameter of the whorl can’t be more than the wavelength divided by pi.  For a blue photon which has a wavelength of 450nm, the diameter would be d= 143 nm which is quite small, about 1/3 of the wavelength.   For a radio wave of 105 mhz the photon can’t be larger than  0.9 meters, about 1 yard, still about 1/3 of the wavelength, but about 630,000 times larger than for a blue photon.  

There is nothing to say that there can’t be billions upon billions of these photons overlapping each other at every point of the bubble.   In fact, there has to be.   Energy is being poured into the antenna and the output is billions upon billions of photons in ever expanding bubbles.  A photon has energy that we can calculate as e = hf, but h is very small, 6.26×10^-34 joules sec.   For a blue photon this is e = 4.2×10^-14 joules and for a 105mhz photon, e = 6.3 x 10^-28 joules, which is much much smaller.   To put this into perspective it would take 5400 x 10^27 photons (105mh photons) to make one watt-hour of energy.    That’s 5400 billion billion billion photons (roughly) for each watt hour! 

As our bubble expands, the surface “stretches,”  and it is that stretching, as the surface field in dynamically expanding, that causes the field to eventually separate into individual photons as the signal strength falls over huge distances and the wave identity is forever lost – all we have left is photons to try to detect.  The whorls represent in my visualization, the photon/particle aspect of the wave, as the wave is separated into compact quantum induced by the need to tightly spin along the bubble front, each whorl being my visualization of the photon.  

As the field further expands, the various quantum (whorls) begin to separate and the interaction with its neighbors becomes less distinct. Each quantum continues to have the same energy but its neighbors contribute less and less to its effect when exposed to a detector, unless lenses or antennas are used.

If we look at the field as it arrives at a detector (say an antenna), we detect the arrival of the photons as energy buildup on the antenna from one of the peaks involving billions of photons of the carrier followed by a decrease in signal and then a rise to the next peak.  The photon, being on the same order of magnitude as the detecting antenna (by design of the antenna based on electromagnetic theory, not photon theory) is easily captured, but billions upon billions need to arrive in order to make a good signal.   Maybe this dualality of wave / particle can be moved to quantum only – particles.

Enough is enough.  The thought experiment has run its course and it is time to have someone else pick it apart or perhaps add to it.  Well…. after all, it is just a thought experiment, but it’s mine and I’ve now written it down for others to consider or pick at – which should be an easy task.  

Oldtimer

What’s Up with Gravity?

Gravity is a problem for physicists.

It not only affects mass, but all forms of energy. If you add energy to a mass, its gravitational effect is increased as well but only minutely because an enormous amount of energy is equivalent to a small amount of mass.

Gravity is weak, far weaker than electrostatic forces. Jump off a building and you go splat when you hit the earth. What took perhaps 20 stories to accelerate you to the splat speed is gravity. But the thousandths of an inch that you were stopped in was due to electrostatic forces. Electrostatic forces are the forces that keep your fingers from going through the keyboard.

Gravity also affects matter at a distance – forever like distances. Every atom in your body contributes to the earth’s attraction of the moon and the sun. Consider a molecule of water in the ocean. It is pulled as part of a tidal force by the sun and moon and it in return pulls on both the sun and the moon. Taken together it all adds up.

Gravity is not shieldable.  Elctrostatic effects are. You can build shields to protect you from most radiation and from electromagnetic fields. But gravity is different. If you could shield from gravity, you could build a big enough room to float around like spacemen. But the gravity force on a pea is just as strong no matter what you put around it.

Einstein developed a theory for gravitation – General Relativity – in which gravity is the effect of a distortion of space and time in the vicinity of mass. We can visualize that in the isolated case of the earth moving around the sun as a depression of a membrane representing space and time around the sun.

However, we can’t get our minds around that being the case when you or I standing on a set of scales. What space and what time are we distorting? How does an individual electron’s mass affect another one a mile away? A million miles away? What is going on?

Lets make a distinction: Gravity and Gravitation. “Gravitation” is the attractive influence that all objects exert on each other, whereas Gravity is the force that objects exert on each other due to their relative masses.  Maybe I can state it more simply: one is an influence (gravitation) and the other is a measurement (gravity). For example, a marine sergeant can influence a recruit to jump by yelling at him/her; how high they jump is a measurement. Gravitation is the attractive influence of you or I on the scales by the earth’s mass in relation to our mass. The scale indicates the weight. The force causing that scale’s hand to move is a measurement of gravity.

Fields

Fields are invisible lines drawn around objects to represent the points of equal strength of some measurable value. For example we can draw field lines around a magnet’s poles – points where the strength of the magnetic pull are equally strong. You have probably seen (or seen pictures of) magnetic filings on paper above a magnet. Those are lines of force that represent the effect of field gradients, not the points of equal strength that I’m making a point about here. The filings line up along gradients of the fields of the magnets, dipole to dipole so they create lines running from one pole to the other. These lines are often called fields. The ones I’m speaking about are equal strength fields that surround each pole. The filings are linked across those equal strength fields and bridge across the gradients, dipole to dipole.

Fields around single (isolated) objects, such as a charge field around an electron or such as a gravitational field around the same electron, are spaced outward like a shell, keeping the shape of the object but expanding as they go, unless interfered with by another field from another object. The difference is that other objects don’t interfere with the gravitational field (unless it is supermassive like a black hole) All points an equal distance from the object have the same intensity or measurable value. Field lines get weaker as you go away from the object due to the measurable effect becoming weaker as you move away This results in a field gradient from one field surface to the next.

A disturbance at the object (say somehow its mass doubles as two atoms merge) changes the fields at the speed of light, like a ripple in a pool of water. In other words, if the moon were somehow removed at a given moment, the earth would still feel the gravitational pull for just over 1 second (1.2 to 1.3 seconds). If the sun were removed at a given instant, we would not know about it (visually or gravitationally) for about 8.3 minutes.

A disturbance of the type where the mass doubles would cause the field shell that represents a given strength to jump to a distance further away from the mass center. The change would occur at the speed of light, so it is dependent on the distance to that field line or surface. It does not change instantaneously as some suppose and it does not change gradually as might otherwise be supposed. Therefore an object at that point would become affected by gravity at the same instant that light would arrive, not before.

The gravitational fields around an object have gradients that decrease with distance, but go on forever. An atom in your arm has a field that reaches the sun and beyond, but very very weakly and completely swamped (for measurement purposes) by all the other fields generated within the earth. Just the same, it does contribute. Everything adds up. Move your arm and the fields change throughout the universe at the speed of light.

Isolated static (electrical) charges affect each other though the gradients of the fields. They want to move toward each other if the charges are different and the fields tend to cancel or else move away from each other if the charges are alike. They move or experience forces across the gradients. Moving charges affect each other in different ways and their movement produces magnetic fields and magnetic fields also induce movement of charges. They are strongly attracted or forced apart if they are close together because any outside influence that would pull or push them are effectively shielded over relatively short distances by their environment.

What about gravity? Gravitational pull is very weak. What causes that weakness? Why don’t objects closer together (such as your fingers on the keyboard with the keyboard) strongly attract each other? Why doesn’t the massive earth crush us in its gravitational field?

My thoughts

These are just my thoughts, part of my personal theory of gravity. Feel free to discount it or shoot it down.

Isolated static gravitational objects also affect each other through gradients of the fields. Atoms, particles with mass, and all forms of energy are always moving. They jiggle. When they vibrate they do so in the gradient of another object’s gravitational field. I’m not talking about the vibration of one atom against another as being any significant part of the gravitational effect, but instead talking about the quarks and other ingredients of the atoms that are always in motion, those most intimate particles that have mass of their own. The gradients they encounter are also jiggling because the remote masses are ultimately composed of the component parts of atoms, and free particles, always moving.

They are affected only minutely by the gravitational field, which has a very small gradient over the volume of the effective mass of the particle, but they are affected nevertheless. The effect is somewhat like the small magnetic particles which form dipoles in magnetic fields and line up across the magnetic gradients, but these are not magnetic but instead gravitational. There is a gravitational tendency to move toward the other object’s mass, toward stronger gradients and away from smaller ones. Masses tend to congregate, group into crowds, pull together, clump up and possibly create cosmic objects, even suns and earths.

It is not that the gravitational field is so small. It is the competition of the gravitational field of our localized individual component masses within the earth’s gravitational field gradients embedded within the background of all the fields of all the masses of the universe also affecting us.

This competition is not present for electrostatic and electromagnetic fields, so they appear stronger – much stronger.

Our jiggling particles have masses that operate within a gradient that is quite small compared to the size of those masses. All the masses in the universe are contributing to the fields experienced by the particles in our body and the result is a small but measurable attraction that is normal (perpendicular) to the gravitational fields of the individual particles with a tendency to be pulled (a force) toward the center of those fields, force and/or movement toward the stronger gradient of the field. But the overall effect is small even though the earth is huge in relation to us.

When an object absorbs energy, its mass goes up because its jiggling goes up and it has a measurably (but very small) higher gravitational effect as it interacts with the field gradients. Cooling a mass to near absolute zero reduces the energy within the mass, those parts that bang against each other, but does not stop the motion of the quarks and other ingredients that make up the rest mass of the object’s atoms. So the gravitational attraction for that object does not diminish appreciably as it cools.

Bring objects closer together, and the gradients get higher at a quickening rate and the attraction gets higher and that effect swamps any energy effect due to cooling or heating. Just the same, the gradients from the masses of the rest of the universe are there all the time and tend to keep the gravitational force small compared to other forces generated by other fields which have limited effect. The gravitational effect can be quite large, but the gravitational force quite small. Gravitational fields around particularly large objects such as black holes and even our sun do get warped because space and time are also warped in those vicinities.

Space-Time Warping

What I leave unanswered with this paper so far is what gravity actually is. What I’ve described above is why I think that a field gradient makes things tend to have gravitational attraction and develop a force between them that we call gravity. I didn’t say anything about what makes the fields themselves. You can go to a certain point around an object and trace out a measurable effect and call it a field but you can’t say what caused the measurable effect without resorting to Newton or Einstein or perhaps gravitons.

In my opinion I have no quarrel with Einstein’s general relativity and its gravitational predictions or his development of the theory of gravity. It is a beautiful work. The mathematics are wonderful to behold and I don’t pretend to know anything about them other than they work and continue to stand up to careful study and experiments, and they also answer the question as to what makes the fields possible, why you can measure an effect at any distance from an object with mass.

It is a matter of relativity!  

 It is space-time warping, the same as with photons. Gravitation seems to be part of the same effects that I’ve been describing for quantum weirdness, and the fact that fields expand or adjust themselves at the speed of light helps make that case.

Fields as I’ve described them don’t move at the speed of light, they are static for static objects. Changes in the field at the source do adjust the fields at the speed of light. However, you can make a case for the changes to be constantly and forever moving the ripples because the masses within every atom (quarks, etc) are always moving and we and all our masses are forever moving on this earth and through the universe. In other words, the changes in the fields, though minute, are always moving at c and always present.

It may be these changes moving at the speed of light that is always running on zero-time zero-distance that are the foundation of action at a distance and gravitation in particular. Every particle in every atom is moving and so there are always field changes moving away at the speed of light, always attached to both the particle and the masses it encounters elsewhere in space and always applying a minute force on any mass it encounters wherever in the universe that might be.

Gravitons

I personally do not adhere to the idea that gravitons exist. Gravitons are a hypothetical theoretical particle that mediates the force of gravity within gravitational field theory. Such a particle would move at the speed of light and have a spin of 2. It would also be massless as a necessity of its speed. It has a lot of problems including “blowing up” (becoming infinite) in situations involving more than a couple of them at any time at energies in the ultraviolet range. The equations in the latter case cannot be renormalized. String theory helps the graviton, but it too has enormous problems.

If there is such a thing as a graviton, it is actually an effect of the changes in the ripples of the field that is caused by the motion of the components of the atoms or free flight particles. As such it could be conceivably be quantized and thus the ripples in the fields might be quantized. So maybe there is such a thing after all, but I’m not sure you can call it a particle and I’m not convinced it has to be a quantum object. The ripples I’m talking about moving from one mass to another are changes in the field that expands as it grows, and diminishes in strength as it goes flying out into space in all direction at once like a shell of a balloon expanding at c. That would be stretching the definition of a graviton quite a bit.

I think my way of looking at it is much simpler and has the effect of making sense to my feeble brain. I’ll leave it to Newton’s equations for most purposes and Einstein’s for special cases for the calculations. They work well. I’m sorry, but gravitons don’t excite me.

Copyright 2007 by James A. Tabb

Marietta, Ga.

aka  Oldtimer

Introduction to Quantum Weirdness

Quantum Weirdness 

Quantum Electrodynamics (QED) theory has developed to be the theory that defines almost all of the understanding of our physical universe.    It is the most successful theory of our time to describe the way microscopic, and at least to some extent, macroscopic things work.

Yet there is experimental evidence that all is not right.  Some weird things happen at the photon and atomic level that have yet to be explained.  QED gives the right answers, but does not clear up the strange behavior – some things are simply left hanging on the marvelous words “Quantum Weirdness”.   A few examples of quantum weirdness include the reflection of light from the surface of thick glass by single photons, dependent on the thickness of the glass; the apparent interference of single photons with themselves through two paths in double slit experiments; the reconstruction of a polarized photon in inverted calcite crystals, among others.

This paper introduces some ideas that may explain some of the weirdness.

I want to introduce the subject in a way that appeals to the non-scientist public, but also introduce some ideas about what is going on, ideas that may explain some of the weirdness and include a few thoughts about the speed of light and relativity that should stimulate thought on the subject.  Hopefully a few physicists will look in and not be too annoyed with my thoughts.   This will not be a mathematical treatment other than some basic equations from Einstein that most of us are already familiar with.   The later chapters will be more theoretical, but easily understood if I do it justice.   I will include some experimental diagrams and discussion of results.

First let’s review a few facts about one of our most commonly known quantum objects.   Light is a quantum object.  When you see the light from a light bulb it is likely you do not realize that the light you see comes in very tiny packets called photons that are arriving in really huge numbers.   Your nearby 100 watt bulb emits around 250 billion billion photons a second!  A photon can travel unchanged completely across our universe from some distant star or across a few feet from a nearby lamp.   Once emitted, it continues until it hits something that stops it.  It lives a go-splat existence.

When we read this page, we are intercepting some of the billions of photons of light bouncing off the page, those that come off at just the right angle to illuminate rods in the back of our eyes.    Physicists tell us that photons are tiny bits of massless energy that travel at the speed of light.   These bits are indivisible; you can’t split them up into smaller pieces.   In transit they are invisible.

Here are some tidbits of information you will need to know later:

Every photon of a particular frequency has the same intensity (energy).     

If you make the light brighter, you are just making more photons, not changing the energy of the individual photons.  If you make the light very dim, only a few photons are being emitted.  Reduce intensity enough and you can adjust the source to emit one photon at a time, even minutes or hours apart.

The energy and frequency of blue light is higher than that of red light

The energy of each photon is dependent on the frequency of the light but not dependent on the intensity.   A brighter (more intense) light of a particular color is the result of more photons per second, not higher energy in the photons. 

Maybe I can illustrate some of the above this way.  Bird shot is a very small pellet load for a shotgun.  It is small and used for hunting birds.    If you drop a single bird shot pellet from a porch onto a pie pan below, it would make a small sound when it hit.  It would have a certain energy when it hit and every pellet of that size dropped from the same height would have the same energy.  The sound each makes at impact would have the same intensity.  If you dropped a hundred at a time, the energy of each pellet would be the same, but the combined impact and sound intensity would be much higher and louder.  Similarly all red photons hit your eyes with the same energy.  If you step up the current to the light source, the number that hits your eyes goes up accordingly, so you see a higher brightness as the number hitting the rods in your eye each moment is increased.  

Changing from a red photon (light) to a blue one is somewhat like changing from bird shot to buck shot, a much larger pellet.  The blue photon hits harder, as does the buck shot, no matter where it comes from.   

Regardless of color, if you make a light very dim, you can get it down to one photon at a time, sort of like dropping one pellet at a time.   Getting a photon down to one at a time is a bit tricky, much harder than getting a single pellet to pour out of a barrel of pellets, but not impossible.

Photons, unlike shotgun pellets have no mass, but they still have energy.  This energy is transmitted from whatever emitted it to whatever it finally hits.   Thus the photon is an energy carrier in a hurry, always moving at the speed of light.

Next I’ll tell you a little about an easily duplicated experiment using double slits that can be used to prove that light is a wave but also can be used to prove that light is a particle.  It is a good illustration of quantum weirdness.