Category Archives: technology

Virtual Particles – A new look at double slit weirdness

I was looking at a web site by Hitachi Global concerning “Advanced Research – Electron phase microscopy” today.   They have a neat movie based on the diagram of an electron microscope which you can find here:

(link to diagram)     http://www.hitachi.com/rd/research/em/doubleslit-f1.html

 These pictures are theirs and are copyrighted by them so all that can be done is show you the link.

Here is a link to their video of the results of a 30 minute run (sped up to just a minute or two):

http://www.hqrd.hitachi.co.jp/rd/moviee/doubleslite-n.wmv

They send electrons one at a time from the source, about 10 per second.  Those that make it around the rod are detected and displayed on a monitor.  

 After about 20 minutes, clear interference patterns develop on the monitor as shown in their video.   

The electrons are accelerated through 50,000 volts, and achieve velocities about 40% of the speed of light.

 These electrons appear to be passing simultaneously around the barrier and interfering with themselves.  Either that or they have some sort of lingering effect due to ctime as I posted in a recent article.   I have a new thought:

Virtual Particles

I believe that there is one obvious answer to such a weird quantum effect – virtual particles.   Photons and any particle achieving significant relativistic effects, such as high speed electrons, atoms, molecules, bucky balls, cats, and anything that can be raised to near the speed of light can also produce companion virtual particles – virtual photons, electrons, etc. when their flight paths are significantly disturbed.  (Well maybe not cats, but who knows?)   

We are getting into new theory here with a new thought experiment!   If an electron such as those in an electron microscope is accelerated to a high enough speed is then jostled by close encounter with a small barrier, it will generate an identical virtual electron on the other side of the barrier.  This applies to any particle raised to relativistic speeds.  If the other side of the barrier is closed off by a detector, then the virtual particle disappears without effect on either the detector or the original electron, being absorbed by the barrier along with the original electron.  If the barrier is open, however, it recombines with the electron after passing around the barrier to produce an interference with itself during the recombination process.

It is similar in effect to the process described in my Quantum Weirdness – Part 2 Double Slit Weirdness post whereby the photon melds around a slit.  Perhaps it is not a meld but a virtual photon recombination – the effect would be the same.

A photon, or any relativistic electron, or other particle jostled by the fields around atoms in a close encounter with the edges of a slit or other barrier would generate a virtual photon, electron or particle that would appear on the other side of the offending barrier and then recombine at a point downstream to cause an interference.   Barriers that block the other side would kill the virtual particle.   A particle that did not exist long enough to recombine with its generating particle would die without causing any effect on the offending detector or barrier.    Only particles that come close enough to be jostled by the fields of the barrier atoms would generate virtual particles on the other side.  Others not close enough to the barrier to be jostled by it would not create the virtual particles.

It is my thought that where there is such jostling, both the particle and its virtual particle might die in the edge of  the barrier if one or the other side were not open, and only those electrons that are far enough from the barrier to not create a virtual pair would continue through the open port to the screen, and thus not show any interference pattern.   

Only if both sides are open would a virtual pair survive a close encounter with a barrier and then be attracted together to recombine on a path toward a pattern maximum.   Scattering around the maximum would be a result of random spacing of near misses and pure chance.

It is another thought that if an electron is buffeted by a barrier and survives the trip but its virtual electron is lost in the material of the barrier, the electron that survives will still be affected by the virtual particle at the point of its destruction, perhaps its phase or displacement or both.   It just won’t show an interference pattern, but it would show some effect of the structure of the barrier material at the point the virtual particle is destroyed, making it possible to “see” the structure of the material within the barrier itself.  Maybe that is just a description of how an electron phase microscope actually works.  The phase is changed by the destruction of the virtual electron and that change depends on the structure at the point the virtual electron lands. 

Copyright 2007,

James A. Tabb

Marietta, Georgia

Thought Experiment – Photons at radio frequencies

I like to do thought experiments.   Many of them lead to dead ends, but I write most of them down anyway because I’ve found that very often I will go down another thought path and end up crossing an earlier one.  Then things get interesting.  The one below includes a thought experiment that dates to Fri, 25 Sep 1998, and I’ve updated it a little to my more recent thoughts.  If you have an idea, keep it around as it may become useful someday.  This one is mostly useful to describe how thought experiments work for me.

Right now I’m still spending some time with the speed of light and with electromagnetic waves, such as from a radio, since both propagate at the speed we call c.   It is easy to visualize a radio wave as a wave because we have always called it that: radio wave.  Duh…, and something radiating in all directions from an antenna is more of a reminder of waves in a pond after we toss a rock in.  But if photons are discrete and quantized (but sometimes seem to act as waves), how do you visualize a radio wave as a quantizable entity? 

Photons at Radio Frequencies 

If light and radio are both in the same electromagnetic spectrum, just when do you stop quantizing and start waving?  Stop photoning and start rippling?  Can you just get rid of the waving altogether and talk about photons at any frequency?  The object of this thought experiment is to start with a simple radio wave and see if it can be described as a photon eventually.   In other words, find out if all electromagnetic waves are photons and maybe even decide how big they are.   After all, if they can be shown to be photons always, then the quantum weirdness could explain lots of things, including light diffraction and interference at radio and lower frequencies in a different way than as a wave – particles even.  The object is to take a whack at this duality thing physicists are hung up on.

I am visualizing first a rather coherent radio signal (such as from a radio transmitter generating its carrier frequency) from a typical antenna as it expands in a sphere or bubble front.  I’m thinking of the very first cycle after the carrier is turned on, but it could apply to any peak in the signal as it propagates outward.  The leading edge of the bubble (or any individual peak) as I see it, is an equal-strength signal that covers the surface.    I am visualizing on that bubble (on the surface) countless whorls of small fields rotating in opposite directions and in close proximity to each other.   (I’ve just made them up for thought purposes, hoping that they can become photons later.)

For example, pick one of the circular whorls and it is rotating clockwise and all around it on every side are other whorls/fields rotating counterclockwise, all the same size whatever that is.  Adjacent to any of those you pick are small fields rotating clockwise, the pattern being like a polka-dotted balloon with the black dots rotating one way and the white dots rotating the other.   Between these whorls, the fields are moving in the same direction on all sides.    For example, the one on the left is spinning clockwise and the one next to it on the right is spinning counter clockwise.  In between the whorls, the fields are both moving down – same direction.   The same thing applies for the fields above and below, adjacent fields moving in the same direction.  So far, so good.  These whorls are helping each other out as they move along.

Now, I look at the small rotating field and realize that since the bubble is moving at the speed of light, the rotating field, if it had a crayon, cannot draw a line on the bubble at all, or it would be doing so at faster than the speed of light. Therefore, as each point of the rotating field is drawn on the surface of the bubble, it immediately falls behind the bubble and describes a spiral arc in space that, when looked at in profile, from the top and from the side, could be the sinusoidal magnetic field and its companion electric field that we detect as the field passes us. Any following energy such as for a continuous signal would fall into step with the leading bubble, describing subsequent bubbles behind the first one, but in sync. For now, I am still looking at a single cycle and things are looking better for photons.

Thus, I see countless rotating fields dragging behind the bubble, the bubble that represents the front of the beginning of the radio signal.  I visualize that the size of the rotating fields do not change, but are related to the frequency of the carrier, such that the higher the frequency, the faster they rotate and the smaller they are.   The energy is related to the frequency by Planck’s constant as e = hf.   This means the faster they rotate, the greater the energy.  (Whatever energy these whorls have, it is exceedingly small, but there are lots of them.)  

Now, we need to do a little head scratching.  Can we speculate as to the size of the whorls?  I think we can establish the maximum size of each whorl by assuming that if these are actually photons, then the energy contained in each photon is located in a flattened disk due to relativistic effects as in my drawing in “Speed of Light Regulated“.   If it is rotating around the whorl as in our thought experiment, then no part of the rotating photon can exceed the speed of light.  Therefore, the trip around the circumference of the whorl cannot be faster than the speed of light.

We also have decided to go down a particular path of our thought experiment by assuming that the whorl rotates at the same rate as the frequency of the carrier and so makes a single turn in one wavelength, λ.  We know that  λ=c/f  and also that the circumference = Πd =  λ.   or d = λ/Π.  The diameter of the whorl can’t be more than the wavelength divided by pi.  For a blue photon which has a wavelength of 450nm, the diameter would be d= 143 nm which is quite small, about 1/3 of the wavelength.   For a radio wave of 105 mhz the photon can’t be larger than  0.9 meters, about 1 yard, still about 1/3 of the wavelength, but about 630,000 times larger than for a blue photon.  

There is nothing to say that there can’t be billions upon billions of these photons overlapping each other at every point of the bubble.   In fact, there has to be.   Energy is being poured into the antenna and the output is billions upon billions of photons in ever expanding bubbles.  A photon has energy that we can calculate as e = hf, but h is very small, 6.26×10^-34 joules sec.   For a blue photon this is e = 4.2×10^-14 joules and for a 105mhz photon, e = 6.3 x 10^-28 joules, which is much much smaller.   To put this into perspective it would take 5400 x 10^27 photons (105mh photons) to make one watt-hour of energy.    That’s 5400 billion billion billion photons (roughly) for each watt hour! 

As our bubble expands, the surface “stretches,”  and it is that stretching, as the surface field in dynamically expanding, that causes the field to eventually separate into individual photons as the signal strength falls over huge distances and the wave identity is forever lost – all we have left is photons to try to detect.  The whorls represent in my visualization, the photon/particle aspect of the wave, as the wave is separated into compact quantum induced by the need to tightly spin along the bubble front, each whorl being my visualization of the photon.  

As the field further expands, the various quantum (whorls) begin to separate and the interaction with its neighbors becomes less distinct. Each quantum continues to have the same energy but its neighbors contribute less and less to its effect when exposed to a detector, unless lenses or antennas are used.

If we look at the field as it arrives at a detector (say an antenna), we detect the arrival of the photons as energy buildup on the antenna from one of the peaks involving billions of photons of the carrier followed by a decrease in signal and then a rise to the next peak.  The photon, being on the same order of magnitude as the detecting antenna (by design of the antenna based on electromagnetic theory, not photon theory) is easily captured, but billions upon billions need to arrive in order to make a good signal.   Maybe this dualality of wave / particle can be moved to quantum only – particles.

Enough is enough.  The thought experiment has run its course and it is time to have someone else pick it apart or perhaps add to it.  Well…. after all, it is just a thought experiment, but it’s mine and I’ve now written it down for others to consider or pick at – which should be an easy task.  

Oldtimer

Fun with time travel

Fun with Time Travel

worm hole from Wikipedia

 Wormhole drawing from Wikipedia

There has much been written about wormholes being used potentially for time travel and popularized by science movies and novels, Contact, Farscape, Stargate. and Sliders, for examples.    It is a familiar topic of some top physicists and not excluded by the Theory of Relativity.

Create a wormhole, drag one end “E” to a vast gravitational source such as a neutron star and wait.   Time for the dragged end will slow down dramatically in comparison with the other end located far from the gravitational source.   This is due to an intense gravitational field’s effect on time – it slows it down, it doesn’t age as fast as the other end.    Then drag the “slow time” end “E” back to the lab and set it beside the “real time”, “L”, and you have a time machine. with ends labeled E on the slow end and  L on the fast.  

If some future civilization could somehow do such a thing, the speculation is that if someone tossed a ball into the L (Late) end, it will come out the E (Early) end before it goes in the L end.   Time travel, back to the past.

Now that may sound confusing, but consider this.  If the E end were put in the gravitational field on July 11, 2007, it would remain at July 11 until it was removed on July 12 and then be a  day early forever.    A ball put into the L end on July 14 would come out on July 13 at E, and a ball put into the E end on July 14 would come out a day later on July 15 at L.   Both ends are at the same date as you sit there watching it, but an object put into either end responds as if it were moving through time.

Wormhole

Looking into a wormhole  – don’t blame me if you get dizzy.

Now there is a situation that needs some explaining.  The person sitting there observing both ends, which are now together, is living only in the “real time” which we call fast time, but it is early time for himself a day later.   He can see both ends at once and both ends of the wormhole are visible at the same time, the one on the left labeled E and the one on the right labeled L.     Suppose he sees a ball with his signature on it pop out of the hole at E.   That implies that someone (presumably him) will put a ball into the L end the next day.    Suppose he decides to lock the lab and prevent someone from doing that.    Where did the ball come from?

Physicists who may accept the possibility of time travel have taken great pains to explain why an action at L cannot be changed by something coming out of E. For example, you can’t go into the L end and come out of E and prevent yourself from going in.  Or kill yourself in the past, or let the ball you toss in be knocked off course by the ball coming out, or lock the door to prevent the ball from going into the L end.  So the answer to the question, “where did the ball come from” is this:  he can’t prevent the ball from being put in the next day if it has already come out early.  The future is already defined for that event.  If he could prevent the ball from going in, it would not have come out early.  Something would intervene or someone from an parallel universe would have to have done it.  Things that come out the E end define what goes into the L end later.  Future foretold.

It occurs to me that it would be apparent soon after it was created whether and how well it works, and if a person could survive the trip or not. It is clear to most physicists that such a machine cannot go further into the past than when the end was dragged into the gravity source because the dragging can only be done in the present.   Merely dragging it does not open a portal to an earlier time than when it was put into the gravitational source.

To determine if and how well it works, you only need to observe the E end. If a ball comes out, it works for some objects. If hamburger like meat or juices come out wearing a name tag, it would not be wise to later go in yourself.  But you would not be able to prevent someone wearing that tag from going in.   His or her fate is sealed.  If your name is on the tag, give it to your worst enemy quick!

Once the end is dragged away, it might work, but it can only begin then. Lets say that the end E is dragged to the lab and placed beside L before any experimenting is done, and the time differential had been built up to 1 hour between the ends. Soon after the two ends are brought near each other, the physicist standing nearby might see a ball pop out with his signature on it.  “It works!”, he shouts.  At that moment, before he ever starts his experimenting, he knows it works with balls. Then he puts the ball back in. Where did the first ball come from? Who signed it? Does the ball come out again? When?

Some Answers:

The first ball came from someone an hour later who puts in a ball previously signed by the physicist. It is the same ball, but cannot come out unless initiated an hour later by action by someone in the future, acting in their present, sending the ball to their past.

If the ball is put back into L, it can’t come out in the lab at E unless the physicist has waited at least an hour after the portal has been established, finds a ball somewhere, signs it and then puts it into L, such that it comes out while portal E is active and in the lab. The initial appearance of the ball at E requires a corresponding initial action at L an hour later.  Predestination.

If the physicist puts the ball back in immediately, it might come back out, but not in his or her laboratory unless the portal has been open in his lab for at least an hour. For example, the portal is only 5 minutes old when the first ball comes out (implying it was put in an hour from then) and if it is immediately put back in, it would be put in 55 minutes before the original one – before the portal is established and comes out somewhere along the dragged path preceding the first one he saw come out.  

In other words, if less than an hour, it must come out somewhere along the path that the port E was dragged through, and thus his evidence would be lost in space. In addition, an unsigned ball must be found, signed and put into the portal L prior to putting the first ball back in. To fail to do so would have meant the initiating event never happened and he/she would have no knowledge of it, much less a signed ball to admire.

The physicist must wait until enough time has elapsed that the time differential from E to L has elapsed (in this case 1 hour) to avoid losing the ball. The physicist must also initiate the process with a newly signed ball. This requires an hour’s wait the first time, but might not if, say two hours (or 48 hours) elapsed before the initial action is taken.

Then putting the ball back in would enable it to come around again and not be lost in space. However he would first have to find a ball and sign it to start the original process and such an action would have already resulted in earlier balls pouring out of the E end. 

Major Problem 

There is a major problem brought to light right here, but it was a problem from the beginning and just now evident.  Lets say that he just got the portals working and they are side by side.  He has a signed ball on the table waiting for the hour to elapse and a signed ball unexpectedly comes out of E.  Now he has two signed balls!   Matter Created?   Energy created?   Violations of energy conservation all over the place!   Can he go into the ball manufacturing business by putting the balls back in quickly and getting a never ending supply of perfectly identical balls?   I don’t think so!  If he could, he should find a large carat diamond and switch to that.   They would pour out of E by the shovel full after a few minutes!  First 1 then 2 then 4 then 16 until they started to pile up and he is shoveling them back in as fast as possible.   Not going to happen!   Whatever happens, energy, and thus mass, and thus new balls (or diamonds) are not got going to be created.  No matter what. 

The answer may be that the ends cannot be placed close enough together that light can go from one to the other within the time frame of the experimental time warp.  That would put a real damper on the project, although it would work as a good portal between far flung space stations.  Set two of them up with a time delay of the light travel time and have one with E at one end and L at the other, then a second set of L at the first end and E at the other.  Then someone could go from one star to the other and back in a matter of seconds, round trip.   The traveler could never be in the same place at the same time.

Lets say this is one sharp physicist that thought that this paradox of having matter creation would prevent it from working at all, so he put his original signed ball into a box and never opened it.   Did it cease to exist?  Can he use the ball that came out of E to put back into L an hour later?   If so, who signed that ball and when?  He only has one ball to deal with and he carefully reuses it no often than once an hour but we still have a major problem to deal with when he opens that box.    Actually the answer to all these is this:  If he puts the first signed ball into the box, seals it, and never opens it, he will never get a signed ball out of E the first time.  

We just can’t deal with that situation logically.  So lets move on to another scenario and see if we do any better.   Suppose somehow the balls can co-exist and if you put one in now, it comes out an hour earlier, no problem.  Suppose our physicist is very conservative, thinks about things thoroughly and decides in advance to wait 3 hours before putting in the first ball. If he actually did wait for the 3d hour, it would come out at the 2d hour.   It would still be matter created because he has at that time still not put the first one in, so he has two.  The happy physicist thinking “this is neat!” might be tempted to put both back in immediately.   He can’t.  Somehow he can’t because to do so would have meant that he would have had 3 at the first hour (the original plus the 2 from the second hour) and he did not.    As soon as one comes out, the future of the portal at L is fixed for that event.   Unless parallel universes come into play.  The portals in different but parallel universes.   You would never know unless the laws and/or sequence of history were different and your ball came back signed by someone else. 

Each appearance implies that the future event will take place.  If a new ball  appears at hour 2 at E,  that ball is destined to be put into L an hour later. 

The above sequence may seem like the past is forcing the future to comply with past events.   Deterministic.  Maybe that is already happening.  Everything we do is pretty much dictated by our past actions.   We have very little room to maneuver.  

“Whenever the future repeats itself the price goes up.*”   Maybe we just can’t afford a time machine.  

 * The original version of this quote is more than 4000 years old!  Future foretold!

Time machine lost! 

When it comes down to the bottom line, a time machine for travel into the past is an energy and matter creator and would have to violate a fundamental law.  Travel into the future also violates the same law because matter and energy in the past “disappears” when it enters the portal. 

During the transition from the past to the future, the universe would have less matter and energy than before. 

Sorry folks, but we aren’t going either way.

Oldtimer

(Reliving the past)

What’s Up with Gravity? part 2

In part 1, I talked about fields and field gradients.  I want to expand on that just a little because I believe that it is key to action-at-a-distance and gravitational forces in particular, and I think I can make it a little clearer.

We know that Einstein’s General Theory of Relativity tells us that gravity is a result of space-time warping in the presence of a mass, often shown in figures as a membrane with a large body (such as the sun) in the middle, sitting in a depression in the membrane and a smaller body (such as the earth) circling around in a smaller depression in the same membrane.  I mentioned that we humans have a tough time getting our mind around that situation when it comes to our own bodies in the earth’s gravitational field.  When we are standing on firm ground, where is the membrane and what is being warped?

I also mentioned that a mass is surrounded by a field and we can draw a circle or sphere around that mass where the field strength (gravity) is the same at all points on the circle or sphere and additional circles around points further out for smaller and smaller strengths.   The result is a series of shells that stretch out to infinity, or at least as far as light has traveled since that mass was placed in that position.  This is different than the normal depiction of fields as being lines connecting two masses along the lines of force.  I’m convinced that my shell drawing of equal strength points will be easier to understand.

gravity figures 1a and 1b

The figure above illustrates two situations.  Figure 1a shows two masses that are different sizes and also far apart.   The field lines are drawn around each for some easily measurable strengths and the drawing shows only those fields that have sufficient strength to measure on our crude meter.  In fact the fields go on forever in ever-decreasing strength.  If we had a better meter, we could draw lines all the way between them and beyond.

The fields in figure 1a are essentially circles around each mass because the masses are positioned so far apart that we can’t discern any distortion in the circles.

The fields in figure 1b show a situation where the smaller mass has been placed closer to the larger one and overlap the outer two measurement circles of each.   The figure shows that the fields merge.   The outer rings of both masses were the same strength before and still are because we are measuring the field at equal strength at the minimum reading we can take with our poor meter.  

Notice that the outer ring and the one just inside of it have now combined for the two masses and as a result of the added strength moved out a little further, that is, bulged further out on the far side of the small mass.  In addition, the 3d ring of the bigger mass has also bulged a little due to the movement of the others.   It should be clear that the fields in the bulged areas are not stronger, but are the same strength as before, but now our measurements of that strength are further out.

The two masses are now part of one system  and the rings around them are distorted a little at all points as they now form equal fields around the center of gravity of the two masses.  That is not really apparent in my simplified drawings, but the system now acts as a larger mass to other masses (not shown) further out.

Our body is a system of masses that act like the system above but infinitely more complicated as the fields of every molecule of our body interacts with every other and with fields external.  However, we can now visualize our body as being the smaller mass and the earth a similar system of masses much bigger.   When we are on the earth, our mass interacts with and modifies the earth’s field ever so slightly (and the earth ours), but sufficient to feel the effects due to the enormous mass of the earth.

There is still a gradient across the two masses (the fields on each side of it are different sizes), and a tension across the gradient that tends to pull the masses together.  Actually, it is not clear if it is a pull or a push.  Is the larger mass pulling the smaller one or is the enhanced field that has now moved out behind the smaller one now giving it a slight push?  To be complete we have to say the small one is also pulling on the larger one or possibly the field behind the larger one is pushing it toward the smaller one.  Indeed the field behind the larger one has also moved out ever so slightly in the same manner as shown for the smaller one, but not discernable from the drawing.

From the drawing, I’m inclined to say they are being pushed together, in the same manner that a rubber band wrapped around two fingers pushes the fingers together.    

How did the fields get there in the first place?

There is no question that the fields are there.   But is the gravitational field moving at the speed of light outward from the mass?  The short answer to the last part is no.   The fields as I explain them are essentially static.  They are modulated by disturbances within the core of the mass (quarks, gluons flying around) but the field strength is essentially static except as modified by the fields of other masses elsewhere in the universe.  That modulation of the fields goes on constantly in ways we could never compute.   The modulation or changes in the field do move at the speed of light, but the lines drawn around our figure do not change except as other masses move and influence the fields.

The answer to the title question “How did the fields get there in the first place?” is this:  They have been there since the mass was created.   For the atomic scale, we are talking about when the quarks and gluons first condensed out of the big bang expansion and atoms and other particles were formed.   Each atom and each particle that has mass had a field established at that time and it has followed them around ever since.   On a larger scale, as atoms combined into molecules and dirt and other debris combined into lumps and moons, the systems of fields depicted in figure 1b began to grow as well.    Eventually a sun was formed, an earth was formed and we were born into it.  Our masses accumulate and become a smaller system of our own.

Thus we are composed of atoms from the creation and from the deaths of stars which may have flung our larger atoms and their attendant fields out into space to end up as us with enough intelligence to understand a few things about our world, including a little about gravity.

Where does mass come from?

If gravity is a function of mass, where does mass come from?   Actually there is no problem here:  if E = mc^2  then it can be restated as m = E/C^2.   Simply put, mass is a form of infinitely condensed energy.   Release the energy and you have an atomic bomb.   The components of an atom really have very little individual mass among them.  All of the mass is ultimately from the energy within.   The quarks and gluons and other stuff inside are moving about in a wildly speedy fashion, like a whirling dervish.   In effect, gravity is more of a function of energy than any real matter.  

The point of mentioning this is that I believe that the gravity fields that were established at the beginning, shortly after the big bang, are the left-over effects of energy being condensed into matter – huge amounts of energy being squeezed or formed out of the soup of creation during the bang and leaving lonely fields stretching out forever and following that condensed energy wherever it goes.  So what holds us down is essentially the debris of locked up energy condensed when our atoms were created, long before the earth was formed and eventually accumulated into the ground we walk on. 

Copyright 2007 by James A. Tabb

Marietta, Ga. 

  

What’s Up with Gravity?

Gravity is a problem for physicists.

It not only affects mass, but all forms of energy. If you add energy to a mass, its gravitational effect is increased as well but only minutely because an enormous amount of energy is equivalent to a small amount of mass.

Gravity is weak, far weaker than electrostatic forces. Jump off a building and you go splat when you hit the earth. What took perhaps 20 stories to accelerate you to the splat speed is gravity. But the thousandths of an inch that you were stopped in was due to electrostatic forces. Electrostatic forces are the forces that keep your fingers from going through the keyboard.

Gravity also affects matter at a distance – forever like distances. Every atom in your body contributes to the earth’s attraction of the moon and the sun. Consider a molecule of water in the ocean. It is pulled as part of a tidal force by the sun and moon and it in return pulls on both the sun and the moon. Taken together it all adds up.

Gravity is not shieldable.  Elctrostatic effects are. You can build shields to protect you from most radiation and from electromagnetic fields. But gravity is different. If you could shield from gravity, you could build a big enough room to float around like spacemen. But the gravity force on a pea is just as strong no matter what you put around it.

Einstein developed a theory for gravitation – General Relativity – in which gravity is the effect of a distortion of space and time in the vicinity of mass. We can visualize that in the isolated case of the earth moving around the sun as a depression of a membrane representing space and time around the sun.

However, we can’t get our minds around that being the case when you or I standing on a set of scales. What space and what time are we distorting? How does an individual electron’s mass affect another one a mile away? A million miles away? What is going on?

Lets make a distinction: Gravity and Gravitation. “Gravitation” is the attractive influence that all objects exert on each other, whereas Gravity is the force that objects exert on each other due to their relative masses.  Maybe I can state it more simply: one is an influence (gravitation) and the other is a measurement (gravity). For example, a marine sergeant can influence a recruit to jump by yelling at him/her; how high they jump is a measurement. Gravitation is the attractive influence of you or I on the scales by the earth’s mass in relation to our mass. The scale indicates the weight. The force causing that scale’s hand to move is a measurement of gravity.

Fields

Fields are invisible lines drawn around objects to represent the points of equal strength of some measurable value. For example we can draw field lines around a magnet’s poles – points where the strength of the magnetic pull are equally strong. You have probably seen (or seen pictures of) magnetic filings on paper above a magnet. Those are lines of force that represent the effect of field gradients, not the points of equal strength that I’m making a point about here. The filings line up along gradients of the fields of the magnets, dipole to dipole so they create lines running from one pole to the other. These lines are often called fields. The ones I’m speaking about are equal strength fields that surround each pole. The filings are linked across those equal strength fields and bridge across the gradients, dipole to dipole.

Fields around single (isolated) objects, such as a charge field around an electron or such as a gravitational field around the same electron, are spaced outward like a shell, keeping the shape of the object but expanding as they go, unless interfered with by another field from another object. The difference is that other objects don’t interfere with the gravitational field (unless it is supermassive like a black hole) All points an equal distance from the object have the same intensity or measurable value. Field lines get weaker as you go away from the object due to the measurable effect becoming weaker as you move away This results in a field gradient from one field surface to the next.

A disturbance at the object (say somehow its mass doubles as two atoms merge) changes the fields at the speed of light, like a ripple in a pool of water. In other words, if the moon were somehow removed at a given moment, the earth would still feel the gravitational pull for just over 1 second (1.2 to 1.3 seconds). If the sun were removed at a given instant, we would not know about it (visually or gravitationally) for about 8.3 minutes.

A disturbance of the type where the mass doubles would cause the field shell that represents a given strength to jump to a distance further away from the mass center. The change would occur at the speed of light, so it is dependent on the distance to that field line or surface. It does not change instantaneously as some suppose and it does not change gradually as might otherwise be supposed. Therefore an object at that point would become affected by gravity at the same instant that light would arrive, not before.

The gravitational fields around an object have gradients that decrease with distance, but go on forever. An atom in your arm has a field that reaches the sun and beyond, but very very weakly and completely swamped (for measurement purposes) by all the other fields generated within the earth. Just the same, it does contribute. Everything adds up. Move your arm and the fields change throughout the universe at the speed of light.

Isolated static (electrical) charges affect each other though the gradients of the fields. They want to move toward each other if the charges are different and the fields tend to cancel or else move away from each other if the charges are alike. They move or experience forces across the gradients. Moving charges affect each other in different ways and their movement produces magnetic fields and magnetic fields also induce movement of charges. They are strongly attracted or forced apart if they are close together because any outside influence that would pull or push them are effectively shielded over relatively short distances by their environment.

What about gravity? Gravitational pull is very weak. What causes that weakness? Why don’t objects closer together (such as your fingers on the keyboard with the keyboard) strongly attract each other? Why doesn’t the massive earth crush us in its gravitational field?

My thoughts

These are just my thoughts, part of my personal theory of gravity. Feel free to discount it or shoot it down.

Isolated static gravitational objects also affect each other through gradients of the fields. Atoms, particles with mass, and all forms of energy are always moving. They jiggle. When they vibrate they do so in the gradient of another object’s gravitational field. I’m not talking about the vibration of one atom against another as being any significant part of the gravitational effect, but instead talking about the quarks and other ingredients of the atoms that are always in motion, those most intimate particles that have mass of their own. The gradients they encounter are also jiggling because the remote masses are ultimately composed of the component parts of atoms, and free particles, always moving.

They are affected only minutely by the gravitational field, which has a very small gradient over the volume of the effective mass of the particle, but they are affected nevertheless. The effect is somewhat like the small magnetic particles which form dipoles in magnetic fields and line up across the magnetic gradients, but these are not magnetic but instead gravitational. There is a gravitational tendency to move toward the other object’s mass, toward stronger gradients and away from smaller ones. Masses tend to congregate, group into crowds, pull together, clump up and possibly create cosmic objects, even suns and earths.

It is not that the gravitational field is so small. It is the competition of the gravitational field of our localized individual component masses within the earth’s gravitational field gradients embedded within the background of all the fields of all the masses of the universe also affecting us.

This competition is not present for electrostatic and electromagnetic fields, so they appear stronger – much stronger.

Our jiggling particles have masses that operate within a gradient that is quite small compared to the size of those masses. All the masses in the universe are contributing to the fields experienced by the particles in our body and the result is a small but measurable attraction that is normal (perpendicular) to the gravitational fields of the individual particles with a tendency to be pulled (a force) toward the center of those fields, force and/or movement toward the stronger gradient of the field. But the overall effect is small even though the earth is huge in relation to us.

When an object absorbs energy, its mass goes up because its jiggling goes up and it has a measurably (but very small) higher gravitational effect as it interacts with the field gradients. Cooling a mass to near absolute zero reduces the energy within the mass, those parts that bang against each other, but does not stop the motion of the quarks and other ingredients that make up the rest mass of the object’s atoms. So the gravitational attraction for that object does not diminish appreciably as it cools.

Bring objects closer together, and the gradients get higher at a quickening rate and the attraction gets higher and that effect swamps any energy effect due to cooling or heating. Just the same, the gradients from the masses of the rest of the universe are there all the time and tend to keep the gravitational force small compared to other forces generated by other fields which have limited effect. The gravitational effect can be quite large, but the gravitational force quite small. Gravitational fields around particularly large objects such as black holes and even our sun do get warped because space and time are also warped in those vicinities.

Space-Time Warping

What I leave unanswered with this paper so far is what gravity actually is. What I’ve described above is why I think that a field gradient makes things tend to have gravitational attraction and develop a force between them that we call gravity. I didn’t say anything about what makes the fields themselves. You can go to a certain point around an object and trace out a measurable effect and call it a field but you can’t say what caused the measurable effect without resorting to Newton or Einstein or perhaps gravitons.

In my opinion I have no quarrel with Einstein’s general relativity and its gravitational predictions or his development of the theory of gravity. It is a beautiful work. The mathematics are wonderful to behold and I don’t pretend to know anything about them other than they work and continue to stand up to careful study and experiments, and they also answer the question as to what makes the fields possible, why you can measure an effect at any distance from an object with mass.

It is a matter of relativity!  

 It is space-time warping, the same as with photons. Gravitation seems to be part of the same effects that I’ve been describing for quantum weirdness, and the fact that fields expand or adjust themselves at the speed of light helps make that case.

Fields as I’ve described them don’t move at the speed of light, they are static for static objects. Changes in the field at the source do adjust the fields at the speed of light. However, you can make a case for the changes to be constantly and forever moving the ripples because the masses within every atom (quarks, etc) are always moving and we and all our masses are forever moving on this earth and through the universe. In other words, the changes in the fields, though minute, are always moving at c and always present.

It may be these changes moving at the speed of light that is always running on zero-time zero-distance that are the foundation of action at a distance and gravitation in particular. Every particle in every atom is moving and so there are always field changes moving away at the speed of light, always attached to both the particle and the masses it encounters elsewhere in space and always applying a minute force on any mass it encounters wherever in the universe that might be.

Gravitons

I personally do not adhere to the idea that gravitons exist. Gravitons are a hypothetical theoretical particle that mediates the force of gravity within gravitational field theory. Such a particle would move at the speed of light and have a spin of 2. It would also be massless as a necessity of its speed. It has a lot of problems including “blowing up” (becoming infinite) in situations involving more than a couple of them at any time at energies in the ultraviolet range. The equations in the latter case cannot be renormalized. String theory helps the graviton, but it too has enormous problems.

If there is such a thing as a graviton, it is actually an effect of the changes in the ripples of the field that is caused by the motion of the components of the atoms or free flight particles. As such it could be conceivably be quantized and thus the ripples in the fields might be quantized. So maybe there is such a thing after all, but I’m not sure you can call it a particle and I’m not convinced it has to be a quantum object. The ripples I’m talking about moving from one mass to another are changes in the field that expands as it grows, and diminishes in strength as it goes flying out into space in all direction at once like a shell of a balloon expanding at c. That would be stretching the definition of a graviton quite a bit.

I think my way of looking at it is much simpler and has the effect of making sense to my feeble brain. I’ll leave it to Newton’s equations for most purposes and Einstein’s for special cases for the calculations. They work well. I’m sorry, but gravitons don’t excite me.

Copyright 2007 by James A. Tabb

Marietta, Ga.

aka  Oldtimer

Quantum Weirdness – A Matter of Relativity? Part 5

Quantum Weirdness

A Matter of Relativity? 

Copyright 2006/2007 James A. Tabb

Part 5: Entangled Particles 

Selecting which atom we use with careful attention to its excitation states can create entangled particles. Some atoms emit two photons at a time or very closely together, one in one direction, the other in the opposite direction. These photons also have a property that one spins or is polarized in one direction and the other always spins or is polarized at right angles to the first. They come in pairs such that if we conduct an experiment on one to determine its orientation, the other’s orientation becomes known at once. They are “entangled”.

EPR image

Figure 10 – Entangled Particles  

All of this was involved in a famous dispute between Einstein and Bohr where Einstein devised a series of thought experiments to prove quantum measurement theory defective and Bohr devised answers. The weirdness, if you want to call it that, is the premise that the act of measurement of one actually defines both of them and so one might be thousands of miles away when you measure the first and the other instantly is converted, regardless of the distance between them, to the complement of the first.  

Action-at-a-distance that occurs faster than the speed of light?  Some would argue (me for instance) that this is more of a hat trick, not unlike where a machine randomly puts a quarter under one hat or the other, and always a nickel under a second one.  You don’t know in advance which contains which.  Does the discovery that one hat has a quarter actually change the other into a nickel or was it always that way?  Some would say that since it is impossible to know what is under each hat, the discovery of the quarter was determined by the act of measuring (lifting the hat) and the other coin only became a nickel at that instant.   Suppose one hat is in Chicago and the other in Paris.  Is this action at a distance? It is easy to say that the measurement of the first particle only uncovers the true nature of the first particle and the deduction of the nature of the second particle is not a case of weirdness at all.   They were that way at the start. However, this is a hotly debated subject and many consider this a real effect and a real problem.  That is, they consider the particles (which are called Einstein‑‑ Podolsky‑Rosen (EPR) pairs) to have a happy-go-lucky existence in which the properties are undetermined until measured.   Measure the polarization of one – and the second instantly takes the other polarization.A useful feature of entangled particles is the notion that you could encrypt data using these particles such that if anyone attempted to intercept and read them somewhere in their path, the act of reading would destroy the message.

So there you have it – Weird behavior at a distance, maybe across the universe.   Or is it a matter of relativity?

I wish to suggest this: entangled particles are entangled at the time of emission and, from the relativistic perspective, they are still attached together at the point of emission until the time that one or the other is disturbed or destroyed, however far that is. Both ends of their flights are stapled together from the moment of their creation by relativistic space distortion. They both live in a go-splat world where time stands still and everything in their path is zero distance away and zero time lapse away due to the relativistic foreshortening of paths and time distortions to zero. In their time and distance collapsed world, if you can wiggle one, the other knows about it because they are both still stuck against their common emission point at one end until destroyed at the other.   There can be “real world” time elapsed during flight (from our perspective) but the photon is running on null time – relativistic zero time and both are still attached to a common point with both ends separated by zero distance and zero time, even if we measure it at tens of meters and dozens of nanoseconds. 

In Summary – Not So Weird After All

Photons and other particles that travel at c have paths that are effectively zero length and time spans that are of zero duration.   This applies to the path length and lifetime of the particle due to relativistic space time warping at c.   No matter how we measure the time and distance a particle travels in a real-world time frame, the particle has a simultaneous, instantaneous path and duration due to the warping of the space and time at c.

We measure the particle in flight at about a nanosecond a foot.   No matter.  The photon gets there instantaneously – no time elapses for the photon – no ageing takes place.  That means no matter how many mirrors or detectors we flip into or out of a path during our calculated flight time, the photon, traveling at c, transverses the entire path in zero time over zero distance.  Our perspectives are that different.   Mirrors or detectors that are in the path at the time it reaches a certain point by our measurement, were experienced by the particle at the instant it was emitted.   So it knows about it “in advance” due to the space time warp factor.   It does transverse the experiment, but cannot be fooled as it knows the entire path the instant it is created. 

Suppose a distant exploding star emits a photon that arrives at our telescope 4 billion years later (by our normal world calculation).  The photon may pass around lensing galaxies on both sides at once because the entire path, including the incredible width of the galaxies, is of virtually zero width and zero depth to the photon which is traveling at c.   The detector’s position, forward of a focal point or behind it, is also experienced by the photon during that same zero path, zero lifetime defining moment of creation, life, and death.  All due to the incredible time and distance warp at c.  So we think it is weird that the change in our detector, at or behind the focal point seems to affect the chosen path of the photon around the distant lensing galaxy.   Not to the photon.  It knew all along, since “all along” was an instantaneous null time and null distance, warped together.

Photons moving through a double slit experiment have all the elements in its path effectively (although not actually) plastered to its nose and all the elements have zero width and zero depth to the photon during its lifetime.   From our perspective, we consider it moving through the experiment, encountering edges, slits, possibly mirrors or detectors.   Whatever we throw in its path, the photon experiences it as if it were there from the moment of its creation because that is the only moment it has.   All because it lives in a relativistic go-splat world.

Photons moving through crystals and reversed crystals see all the paths simultaneously and its entire flight path as one event – all happening simultaneously.   All open paths are valid because they are essentially congruent, allowing the photons to retain their polarity if there are paths that maintain its ability recombine at the far end.  If any path is broken by a detector when it would pass by in our real world measurement system, then it is encountered in its relativistic world during its null time existence.

Quantum Weirdness Is a Matter of Relativity! 

James A. Tabb

Marietta, Georgia

Originally published among friends February 6, 2006

Quantum Weirdness – A Matter of Relativity? Part 3

Quantum Weirdness

A Matter of Relativity?

Copyright 2006/2007 James A. Tabb

Part 3: Polarized Light Weirdness

Figure 7 shows calcite crystals in which the light is split into two parts, a horizontal (H) and a vertical (V) channel. If we send individual photons through, they go through only one channel or the other, never through both, and those that come out of the H channel are always horizontally polarized, those that come out of the V channel are always vertically polarized as we might expect.

Polarized crystals

Figure 7. Photon in Calcite 

It is possible to orient photons to other angles at the input. One such arrangement is to adjust them polarized so that they are tilted 45degrees right or left. If we orient the input to 45 degrees, tilted right (+45), we get half of the photons coming out the H channel and half out of the V channel, one at a time, but these are always horizontal or vertical polarized, no longer polarized at +45. 

Reversed Crystals 

Figure 8. Reversed Crystals

Now comes the weird part as shown in Figure 8. If we put a second calcite crystal in line with the first one, but reversed so that the H channel output of the first goes into the H channel of the second and the V channel output of the first goes into the V channel of the second, we expect the output to consist of one photon at a time (and it is), but since the first crystal only outputs H or V polarized photons we expect only H or V polarized photons out of the second crystal.

However, if we test the polarization of the output, we find that the photons coming out are oriented to +45. Individual photons go in at +45 at the input, become individual H or V oriented photons in the middle, but come out oriented +45 again at the output! Somehow the two channels combine as if the individual photons go through both channels at the same time, despite rigorous testing that detects only one at a time.  Quantum weirdness at work.

The polarization problem, like the double slit problem, is often called a quantum measurement problem. An often-quoted theory is that the photon does go both ways, but any attempt to detect/measure one of the paths disturbs the photon such that the measurement results in a change in the path of the photon.

Relativistic Effects Again

When you apply relativistic effects to this scenario the effect is exactly the same. The calcite crystals and all the paths are initially zero length as the photon approaches them.

The crystals and the paths expand as the photon enters them until the photon spans them end-to-end of the entire experiment. The two paths are separated by zero distance and have zero length and can be treated as if they are only one path. The experiment has no depth.

Much like the case of the double slits, if the paths are complete such that the edges of the photon can “feel” itself through the crystals when it hits them, it partially separates and then melds together at the front to recombine without ever becoming two parts while maintaining its integrity, in this case +45.  If the paths are not complete, it is forced to choose one path or the other. When it is able to meld around a path, the recombination restores the wave polar orientation.  When it can’t, the recombination does not occur and the polar orientation is destroyed.

Once again, the effect is due to the relativistic effects of time dilation and length distortion/contraction for the photon.

Next:  Photons that hit tilted glass weirdness explained. 

Does Time Exist?

There is no question that we experience what we call time.   There is a precision with which we can measure the progression of events over time that is phenomenally accurate.   Things age and particles decay over “time” and it is consistent.    However, physical laws that use time as a reference work equally well for time reversal – going backward – a particle hitting another particle, generating other particles and emitting photons will work just as well running backward according to physics.   We just have never experienced time reversal and this disconnect with the laws of physics seems to be a mystery.  This disconnect is used by many to express the opinion that time exists.   However the fact remains that equations of space and time break down at certain points and time falls out of some of them as an unnecessary factor.

Think of this: photons live in “null” time.  They live and die in the same instant because they travel at the speed of light and therefore if time exists for them, they do not experience it.   They experience zero flight time over zero distance no matter how far apart the start and finish line are.  They live in a go-splat world.    A photon leaving a star a billion light years away destroys itself in our eye the instant it is emitted, having not aged even a fraction of a nanosecond in its long trip.   Space and time are that warped!

The space and the time have been warped because of the speed of the photon.  It travels at the speed of light.   Our very definition of speed involves time so when we say the speed of light we assume that time exists, but for the photon time does not exist.  

A photon experiences zero distance and zero time due to its incredible speed.   Every photon that lights our office or illuminates our book arrives the instant it is emitted.  It has not aged even though we can calculate that it moved from the bulb to our book and then to our eye at about one nanosecond per foot of travel.  The photon did not experience the “time” that we measure or calculate.  It aged not at all.  Time does not exist for any particle moving at c.  It only exists for us as calculated or measured in a laboratory.  But does it exist as a real dimension?  Does it have a physical basis?  

A photon in flight between point a and point b is invisible to any and all observers.  It does not exist in flight and can only be detected at b when it actually arrives.   The photon in flight experiences null time – time zero – no time – non-existent time, and travels a null path – or no path at all, regardless of the length of its travel.   Time for the photon does not exist, nor does distance.  Those measurements of time and distance for the photon are for our domain only – the human one.

Now consider an extension of that thought – most of the particles that make up our world vibrate and exchange energy with each other.  That occurs even at temperatures close to zero.   There is also a froth of virtual particles that pop into and out of existence continually at all times even in a so-called perfect vacuum.     All the energy exchanged through photons is timeless because all photons are moving at c.   Even gravity moves at c.  Gravity is also timeless within its self.   The exception is for atoms that bump into each other and exchange energy through vibration and bumping.   Or do they?   Do they actually touch or isn’t there an exchange of particles  moving at c that keep them apart?

If the energy transfer by photons is timeless, the photons are timeless, gravity is timeless all due to the speed of light as experienced by the particles that carry them, then does time exist or are we merely measuring external events by counting uniform progressions that we experience and can see?

I know and acknowledge that we can measure the speed of a photon to a very high precision.  I know that we can measure the speed of gravity as other planets tug on ours and on each other.    The measurement is based on the progression of the components of our clocks.   We do live in a dimension that experiences progression of events in one direction which we call time.  

However, we can measure but we cannot see.  We can observe the effects but not the event.   The truth is that whenever something is traveling at c, simultaneous observations are impossible.  Every observer of the same event sees something different.    Have you ever seen time?  Maybe the change in a clock, which is actually only a measure of repetitive events, whether a wind up (measuring escapement events) or a NBS clock counting cycles of an atomic nature, but not timeWe can’t see time, only experience it.  We can’t measure time, only define it.

Time for us may be just a projection of ourselves on a line defined by a progression of events that occur in a uniform manner, but it may not really exist.    We are bundles of energy made up of atoms and particles in extraordinarily rapid motion.  Take us down to the quantum world and we are made up of many quadrillions of particles exchanging energy among themselves in mostly empty space.    In such huge numbers there is an average motion and an average progression of events that may make up our concept of time.  Certainly our most accurate “clocks” are merely counting cycles of an atomic nature.   Even the National Bureau of Standards admit they are “not measuring time, but only defining it“.

Does time exist just for us because we experience this progression in a uniform manner? Perhaps it is not actually an extra dimension as we have been so often told.

Do you think time exists as a dimension in the same manner as x, y, z?  Is time real?  If you have been following my last two posts, you will understand it is the lack of time, at least on the photon level, that explains quantum weirdness.   And explains it well.

What do you think? 

Oldtimer

PS:  here are some other articles by Oldtimer on the subject of time

Enjoy!

Quantum Weirdness – A Matter of Relativity? Part 2

Quantum Weirdness

A Matter of Relativity? 

 

Copyright 2006/2007 James A. Tabb 

Part 2 – Double Slit Weirdness

When a proper light source (coherent – light from a single source all at the same frequency) is placed in front of a screen with a narrow slit, the light is diffracted (spread out) as it goes through the slit and appears as a shaded band centered on a screen or photographic film. The light is scattered and/or bent by the edges of the slit as shown in Figure 3.

Single Slit Diffraction
Figure 3. Single Slit Diffraction

 If we add two more slits located side by side between the first slit and the screen, the light passing through each of the new slits is diffracted again such that the photons from each slit are bent across each path and combine to reinforce or cancel each other where they strike the screen.

 Double Slit Diffraction

Figure 4. Double Slit Interference

The result is an interference pattern (light and dark bands) on the screen as shown in Figure 4. If you block either of the two middle slits, the interference pattern disappears. If a photographic film replaces the screen and the intensity is reduced so that only a few hundred photons are sent through the double slits before the film is developed, the interference pattern will be made up of individual dots organized in a pattern that duplicates the interference pattern. Keep the film in place long enough and the patterns become more complete. Put a cover over one of the slits and the film still shows dots, but no interference pattern, only a diffraction band. Put a detector in one of the slits and the interference pattern also disappears.

Now if the light source is reduced in intensity enough to send only one photon at a time, a weird result can be seen if the photographic film is left long enough (days or even months in a very dark box) where both slits are left open. The interference pattern continues to develop on the film, even though there is no possibility of interference (or even photon bumping) unless the individual photons go through both slits somehow.

Part of the current explanation is that the photon goes both ways, but any measurement (putting a detector in the path) always disturbs the measurement. In fact a whole class of quantum theory has developed around the inability to make precise measurements due to the measurement disturbance problem. How do we explain this quantum weirdness?

A Matter of Relativity

There are two processes going here. One process is the real time that our experimenter sees, about 1 nanosecond per foot of photon travel. The photon is traveling through the experiment with real and measurable delays from the emitter to the first slit and from there to the double slits and from there to the film. The other process is that the photon’s relativistic path is zero so it is in contact with the film and the emitter at once and all of its paths in between are of zero length and require zero time. All paths that can lead to the same path are conjoined. Time of flight and distances for the photon expand only as it passes through the setup. The photon and the observer see simultaneous events differently. All the events are simultaneous to the photon, but none are to the experimenter.

All the elements of our experiment have no depth and seem to be congruent as if they were paper cutouts that have been bonded together with the emitting source. As observers, we can’t see it. As the photon leaves one element of our experiment, such as the first screen with one slit, the double slits are squeezed down to a point and plastered across its nose. The photon easily fits across both slits of the second screen as the distances to them are zero and thus the distance between them is also zero. Indeed it fits across the entire second screen, but the edges are less distorted. Since the photon is also plastered across the slits, everything behind the slits is also plastered there – the entire path is available at one instant as in Figure 5 a. The photon is able to take all paths (even simultaneously) that lead to a common point because they are all in front of it as it enters our experiment, and zero distance separates all the paths. No amount of fiddling with flipping mirrors or detectors will fool the photon into disclosing its path because the mirrors and detectors are also plastered to the photon’s nose throughout its (instantaneous) flight. The mirrors and detectors are in place when the photon makes its decision or they are not. The result is path shut or open.

As the photon moves from the first screen to the second, the second screen moves with it (attached to its nose) until it reaches its normal (real world as we see it) dimension and then expands as the photon moves into the slits as in Figure 5 b. Portions perpendicular to the path of the photon become normal size and atoms from the edges again buffet the photon.  Everything behind the photon is of no consequence, gone – vanished.

Relativistic Double Slit

Figure 5. – Relativistic Double Slit

 From the relativistic point of view, the photon has a number of crisis points such as within the first slit. As it passes through the first slit, the atoms at the edge of the slit buffet it and the photon’s path is randomly diffracted from the original path.   The slit has grown to normal size (perpendicular to the photon’s travel) but now the photon is virtually attached to the entire screen containing the double slits in the background that represent the next crisis point or wakeup call. If neither slit is blocked, it has an opportunity to go through both.

Photon Recombining

Figure 6. Photon Recombining

I see the photon as being a packet of energy that obeys the laws of conservation of energy. It flows around the barrier between the two slits only if it can recombine on the other side without ever completely breaking into two separate pieces. It behaves almost like a perfect fluid and leaks through where it can, but unlike a perfect fluid, it cannot separate into multiple “drops”.

If the packet can meld behind the slit spacer as in figure 6, it does so before it separates in front of the spacer. The melding process takes place an integral number of wavelengths from the slits and results in a change in path that leads to an impact in the interference pattern, a pattern that can be calculated using the methods of QED.  As soon as the melding takes place, the photon separates in front of the slit spacer and begins joining the rest of the body already melded together, so that the photon is always a full packet of energy

If melding does not take place because of a blocking detector or some other shield, then the photon pulls itself into whichever slit passed the bigger portion of its packet and slips through that slit whole.  If it is the blocked slit, it is destroyed there.  If it is the unblocked slit, it comes though whole but does not interfere with itself because it did not meld around the slit due to the blockage in the other slit.  It may also be destroyed by the slit itself.   The photon is destroyed in the blocked slit or on the film behind the open one, never both. It makes no choice. In the case of a blocked slit, there is no recombination. The side with the larger energy pulls the photon through an opening if there is one and if that opening has a detector or blockage, it dies there.

The answer to the weirdness of photons seeming to interefere with itself is that it is due to the forshortening of the experiment due to the effects of relativity.

Next:  Polarized Light Weirdness Explained

Quantum Weirdness – A Matter of Relativity? Part 1

Quantum Weirdness

A Matter of Relativity?

Copyright 2006/2007 James A. Tabb

Part 1: Introduction and Photons In Glass

Quantum Electrodynamics (QED) theory has developed to be the theory that defines almost all of the understanding of our physical universe. It is the most successful theory of our time to describe the way microscopic, and at least to some extent, macroscopic things work.

Yet there is experimental evidence that all is not right. Some weird things happen at the photon and atomic level that have yet to be explained. QED gives the right answers, but does not clear up the strange behavior – some things are simply left hanging on the marvelous words “Quantum Weirdness”. A few examples of quantum weirdness include the reflection of light from the surface of thick glass by single photons, dependent on the thickness of the glass; the apparent interference of single photons with themselves through two paths in double slit experiments; the reconstruction of a polarized photon in inverted calcite crystals, among others.

This paper introduces some ideas that may explain some of the weirdness.

Photons and Relativistic Effects:

I suggest that most of the difficulties we have in addressing the various weirdness phenomena at the particle level can be traced to relativistic effects. It all comes down to the two different simultaneous viewpoints: The one we can see and measure, and the one the photon experiences. Relativistic effects rule the photon world and our life experiences rule ours.

Consider that photons travel at the speed of light and thus experience relativistic effects. What are these effects? Einstein gave us some tools to work with to describe the various space-time relativistic changes as shown in Figure 1. There is a mass equation also, but the mass increase is not a factor here, since we know that the photon has no rest mass.

Relativistic Equations

Figure 1.   Relativistic Effects at c

The photon’s clock stops because the time between clock ticks becomes infinitely long at c. Similarly, the distance traveled becomes zero because the photon’s unit inch becomes infinitely long and stretches to the end of its journey in one bound. In other words, the entire path is foreshortened to zero length, and everything in its path is compressed to a dot.

We, on the other hand, see the photon from our experimental perspective. Photons move at speed c, take a nanosecond to go about a foot, take centuries to go from a nearby galaxy to earth, all of which we can measure or calculate with confidence and confirm with experiments.

The Photon’s Go-Splat World

The photon lives in a “go-splat” world. The clock of a photon completely stops the instant it is emitted and stays stopped throughout its journey. The distance traveled by a photon becomes zero as compared to the distance measured by the stationary observer. It may take a photon a billion years to cross from a distant galaxy to our telescope from our perspective, but for the photon, as soon as it is emitted, it arrives – splat; there is no time elapse in the photon world. In effect, the space and time between the photon’s emission and its destination are severely warped.

Therefore, the photon’s world is flat and stapled together, front-to-back, between its start point and its end point. In effect, the photon is touching its emitter on one end and our eye on the other with zero depth of field. Whatever phase it has at the time of emission, it has when it hits our telescope because it is all frozen in time. Physicists call the time experienced by the photon null time and the path the null time path.

It is this stapled together, zero time world that I believe explains much of the quantum weirdness we experience. Our life and experimental experiences are so strong that we can’t easily get our minds around the relativistic phenomena.

What the photon would know of the experimental setup, whatever it is, consists of wake-up calls at various edges or medium changes and eventually wherever it is absorbed in our screen or detector, all zero distance apart. This is vastly different from our perspective where everything is so carefully laid out, separated, calibrated with finite distances and photon flight times.

From our perspective, if it is going across a table, it moves about a foot every nanosecond. If it is going across the universe it takes years, even millions or billions of years to get from there to here. However we see it or calculate it, the time it takes for the photon’s lifetime is always zero. Go-Splat! As soon as it leaves on its journey, it arrives.

Quantum Weirdness in Glass

One of the weird aspects of photons involves reflection from glass of varying thickness. Send a laser pointer beam perpendicular to a pane of glass and about 4% of it will reflect back, on average, but, by carefully selecting glass of various thicknesses, the reflections vary from 0% to 16%. Glass a foot thick can be slightly adjusted in thickness to not reflect at all! All the light goes into the glass – perfect transmission. QED easily shows how this works for light beams. Rays from the back of the glass interfere with the rays coming in the front so as to cancel the reflection if the wavelength is a multiple of ½ wavelength.

However, the cancellation at ½ wavelength also works for individual photons for thick glass, and there seems to be no answer other than “quantum weirdness”. How does an individual photon know how thick the glass is the instant it hits the front surface when the back surface is thousands of wavelengths away? The reflected photon would be six feet away before a copy could make a round trip through a foot thick piece of glass. (Two feet round trip at 1/3 speed of light in air)

Quantum Weirdness and Relativity

Lets look closer at our foot thick piece of glass. The photon is moving at c and from a relativistic perspective our piece of glass has zero thickness (our entire experiment has zero thickness) as shown in Figure 2a.

Photon in thick glass

Figure 2. Photon in Glass

Immediately after impact, a full  half wave of the photon fits completely into the glass (2c), no matter how thick. The photon’s wavelength in glass is only 1/3 of its air wavelength. If the thickness of the glass is a multiple of a half-wave of the (shortened) photon, the photon will go right on through without reflection. Otherwise, depending on the thickness, some percentage (0 to 16%) of them will reflect.  In effect, the glass collapses to zero thickness if it is an exact multiple of the half wavelength, and if not, there is an overhang on one of the collapsed thicknesses that determines the probability of reflection.  Thus the photon does not have to “wiggle” its way to the far side and back to make its decision. If it is going to reflect, the decision is immediate due to the glass being foreshortened to fit the photon. It is, in fact, relativistic foreshortening of the glass.

Note, although the surfaces in the drawing above and those that follow are drawn with straight lines and flat, they are shown that way only for illustrative purposes. At c, all the points in the direction of travel are pulled to one point at the nose of the photon because they are zero distance apart to the photon, and surfaces near the path are severely bent.

It should also be noted that, once within the lattice of the atoms of glass, the atoms to each side of the photon resume their normal spacing and are no longer foreshortened. This is because they are perpendicular to the direction of travel. Those atoms in front continue to be shortened to meet the photon. Thus the photon length and the glass thickness exactly match, regardless of thickness, if the glass is an exact multiple of a half wavelength.  In that case, the photon completely enters without reflection. If the thickness does not fit the wavelength of the photon exactly, there is a crisis due to a mismatch in which the glass is not quite zero thickness to the photon. The probability of reflection depends on the degree of mismatch, but the reflection decision is made while the photon is still at the front surface and just inside.

There are two effects going on simultaneously: The relativistic effects for the photon and the realistic effects for the observer. The photon fits within the entire experiment (zero thickness, no wiggle time due to no time elapse) while we, as the stationary observers, see the entire experiment where the photon is traveling at c and has to wiggle 130,000 times to get through the glass in a measurable time (about 3 nanoseconds for a foot of glass). One case of quantum weirdness explained by relativistic effects.

Next: Explaining Double Slit Weirdness