Category Archives: photons

Five Major Problems with Wormholes

Five Major Problems with Wormholes 

Wormholes are supposed to be shortcuts from one time and place to another time and place.   For example, drive your spaceship into one end and exit near some other star, perhaps 1000 light years away.   Drive back through and return to earth.  Simple enough.

  

 Wormhole drawing from Wikipedia

If a wormhole is ever created for passage of man or machine by some future civilization, then there will be some major problems to overcome other than the biggie… creating the wormhole in the first place.  I believe this is the first time most, if not all, of these problems have been identified.  

Although the wormhole supposedly bends/warps time and space, there is a fundamental limit to how fast you can get from here to there, no matter how much time and space are warped.   That limit is c and it applies to the Long Way Around (LWA) path length.  First let me tell you why I think so as it is key to the some of the rest of my list of problems.  

A common wormhole is created by every photon that exists.   For example, a photon does a space/time warp from Proxima Centauri (the nearest star to our sun) to our eye.  The distance and time the photon experiences is zero.  It does not age during the trip and the total distance is zero at the moment of creation.   However, it still takes 4.22 years to get here, the time light takes to travel the total distance from that star to ours.     

Einstein’s equations say that the photon traveling at c has a total path length of zero and travel time of zero duration.  I believe that applies to every photon.   However, we know that the photon takes 4.22 light years and travels about 28 trillion miles from that star to our eye as we measure or calculate it.   Even though the path the photon sees is zero length and the time it ages is zero time during the trip, it still does not arrive until the entire 4.22 light years elapses.  

It is my theory that this is because the space/time warp of our photon wormhole connects the emission point on Proxima Centauri and the landing point in our eye only in a virtual sense and only in the first instant of its creation.   

After that first instance, the photon moves away from the emitter at light speed and the path behind it expands as the photon travels along it at c.   The photon’s path to our eye always remains zero length, but it traverses the path at c, leaving an expanded path behind until the entire path is traversed.   The photon never transfers its energy until the entire path is completed at the maximum velocity of c.   

My first wormhole problem is that the time required is no less than the long way around travel time at c.   Anything entering the wormhole is imposibly close to the other end (as for our photon example), but cannot actually get there until the path from the entry point expands behind the object moving at c throughout the entire trip, the LWA, just as it does for the photon wormhole.  

Even if the wormhole spans a time/space warp of 1000 light years, it will still take no less than 1000 years to get from here to there even if the wormhole appears to be of zero length.   The crew of the space ship that manages to get into a wormhole would not age during the trip, a distinct advantage for the crew and the ship’s lifetime.  It would seem to be instantaneous and if it were indeed reversible, then the return trip would be just as fast.  Drive into one end and return immediately and likely not be but a few hours older.   However any companions that were left behind on earth would be dead nearly 2000 years.   All this assumes the problems that follow can be solved.

The second problem is that a wormhole cannot be established before it is created at each end.  If  one end is created today and the other is somehow created on a distant star, the wormhole would not be operable until the second wormhole is created, presumably at least the normal space ship travel time from one construction site to the other, even if the construction crew travels at c.    Unless the wormhole acts like a reversible time machine, a much more difficult arrangement, it will take the same amount of time each way through the wormhole with the arrow of time aging both ways and it cannot begin to be used as a shortcut until both ends are finished.    It would take a very patient civilization to plan for such a feat.

My third problem involves getting into any wormhole that moves you along at light speed.  The nose of the ship would presumably be accelerated to light speed even before the crew compartment made it into the opening.   The result would be powdered spaceship and crew with photons leading the way, larger particles and atoms dragging behind, but no survivors or anything recognizable.  

The fourth problem is getting out of the wormhole.  Let’s say somehow you can get your space ship in and up to speed.   Everything going out the other end arrives there at light speed.   A huge blast of various rays and light burping out the other end, frying anything loitering near the exit.  A great light show, but hardly useful for the crew wanting to get from here to there in a hurry, or their greeting party for that matter.  The wormhole turns out to be a great ray gun! 

My fifth problem involves reversibility.  We assume that entering the wormhole at either end establishes the direction of travel.  However, it appears to me that it is very likely that the arrow of time exists only in the direction of the creation of the wormholes.  That is, from the first wormhole to the second.  Items entering the first one created would be moving in an arrow of time from the earliest time to the latest.   Items trying to enter the second wormhole to come back would be rejected in a smoldering heap or blast of rays.   If that logic is reversed, the problem still exists:  One way only!

Arrow of Time Established? 

I believe this applies to photons and particles in general.  The equations for physics always seem to allow collisions to be reversable and there are no laws that would not allow any set of particle interactions to be reversible.   However, it is my opinion that photons are not reversible for the reasons listed above.  They are zipping through non reversible wormholes.   Energy is transferred from point of creation to some other point where it is absorbed or transferred to another particle and can’t go back though the wormhole as it is a one way street, from first end created to the second end and never the other way around.  That means the arrow of time always moves forward and is never reverseable.  It can be stopped but never reversed.

SuperLumal Transmission?

As a side note, for the reasons listed in the problems listed above, there will be no speedup of communications through a wormhole.  No superlumal transmissions, no advantage over sending it across space the normal way, and very likely, no two way communications.   I hope these revelations do not stop any projects in progress as science will advance no matter what.  8>)  Photon wormholes are the best anyone will be able to do.

Oldtimer

PS – check out my earlier wormhole article

Copyright 2007, James A. Tabb  (may be reproduced with full credits)

 

 

Location or Momentum

Space Guy

Bruster Rockit: Space Guy!                           by Tim Rickard

A key element of quantum mechanics is Heisenberg’s uncertainty principle, which forbids the simultaneous measurement of the position and momentum of a particle along the same direction, as so aptly illustrated by Tim Rickard above. 

E = c \, p \!  for a photon, where E is the energy, c is the speed of light and p is the momentum.    So the momentum of a photon is equivalent to the energy of the photon divided by the speed of light or p =  E/c  where E is also related to the frequency of the photon by Planck’s Constant E = hf.   h is Planck’s constant and f is the frequency assigned to the photon.   f is also related to the wavelength of the photon by f = c/λ.  

So E = hc/λ = cp       Therefore    p = h/λ

But we know the values for both h (6.26×10^-34 joules sec.) and for λ if we know the color of the photon.  Usually if we are dealing with coherent light (red laser for example) then we know the wavelength λ very accurately.   Thus we know the momentum very accurately.

There is another factor in this equation – spin angular momentum of the photon which is independent of its frequency.  Spin angular momentum is essentially circular polarization for a photon.  Angular momentum is ±h/2π.   It is the helical momentum of the photon along its flight path.   In order to pin down the momentum we also need to know its angular momentum, but it is a constant that is either spinning one way or the other, no half spins no quarter spins just +h/2π or -h/2π.   

The key for this discussion is that we know the momentum for any photon if we know its wavelength.   p = h/λ and the direction of its spin ±h/2π.   According to Heisenberg’s principle we cannot know the location of the photon if we know its momentum.  Since we do know its momentum we are at a loss to try to pin the location to a particular spot such as through a narrow slot or pinhole.  

Whenever we try to fit a photon through a slot, we are trying to pin down the location as it goes through the slot.  The narrower we make the slot the closer we are trying to pin it down.   Nature resists by causing havoc with our measurements – fuzzy behavior/weird effects.

Pair Production

Pair production is a possible way for nature to slip one by us – putting a photon through both slots simultaneously, thus confounding our measurements completely.   When a photon hits an obstacle such as the thin barrier between the two slots, it melds through the slots around the barrier as in my earlier posts or possibly down-converts to a lower frequency pair of photons (or up-converts to a higher frequency) through pair production (conserving energy by the frequency change).  These pairs recombine on the far side of the barrier through an up (or down) conversion process causing an effective interference due to jiggling in the conversion process. 

Our barrier strip knocks the photon silly, and it responds by splitting up, zipping through the two slits independently, then recombining in a way that looks like interference.

Virtual Photons 

Another type of pair production would be through creation of a virtual photon – a pair with one real and one virtual as also mentioned in an earlier post.   The scenario is the same – barrier knocks photon silly, virtual photon forms, passes through other side, then effectively recombines while interfering with the “real” one.   The original and virtual photons could actually be down converted or up converted photon pairs that recombine by up or down conversion causing interference-like behavior.

In either case, blocking one slit or the other would prevent melding and also prevent pair production as well as the formation of virtual photons.

Pair production through down/up conversion and/or virtual pairs would fit better with particles with mass acting like waves that cause interference when passed through slits.  Even bucky balls and cats could potentially form virtual pairs if moving close to the speed of light.   Well, again, maybe not cats.

 Oldtimer

Thought Experiment – Photons at radio frequencies

I like to do thought experiments.   Many of them lead to dead ends, but I write most of them down anyway because I’ve found that very often I will go down another thought path and end up crossing an earlier one.  Then things get interesting.  The one below includes a thought experiment that dates to Fri, 25 Sep 1998, and I’ve updated it a little to my more recent thoughts.  If you have an idea, keep it around as it may become useful someday.  This one is mostly useful to describe how thought experiments work for me.

Right now I’m still spending some time with the speed of light and with electromagnetic waves, such as from a radio, since both propagate at the speed we call c.   It is easy to visualize a radio wave as a wave because we have always called it that: radio wave.  Duh…, and something radiating in all directions from an antenna is more of a reminder of waves in a pond after we toss a rock in.  But if photons are discrete and quantized (but sometimes seem to act as waves), how do you visualize a radio wave as a quantizable entity? 

Photons at Radio Frequencies 

If light and radio are both in the same electromagnetic spectrum, just when do you stop quantizing and start waving?  Stop photoning and start rippling?  Can you just get rid of the waving altogether and talk about photons at any frequency?  The object of this thought experiment is to start with a simple radio wave and see if it can be described as a photon eventually.   In other words, find out if all electromagnetic waves are photons and maybe even decide how big they are.   After all, if they can be shown to be photons always, then the quantum weirdness could explain lots of things, including light diffraction and interference at radio and lower frequencies in a different way than as a wave – particles even.  The object is to take a whack at this duality thing physicists are hung up on.

I am visualizing first a rather coherent radio signal (such as from a radio transmitter generating its carrier frequency) from a typical antenna as it expands in a sphere or bubble front.  I’m thinking of the very first cycle after the carrier is turned on, but it could apply to any peak in the signal as it propagates outward.  The leading edge of the bubble (or any individual peak) as I see it, is an equal-strength signal that covers the surface.    I am visualizing on that bubble (on the surface) countless whorls of small fields rotating in opposite directions and in close proximity to each other.   (I’ve just made them up for thought purposes, hoping that they can become photons later.)

For example, pick one of the circular whorls and it is rotating clockwise and all around it on every side are other whorls/fields rotating counterclockwise, all the same size whatever that is.  Adjacent to any of those you pick are small fields rotating clockwise, the pattern being like a polka-dotted balloon with the black dots rotating one way and the white dots rotating the other.   Between these whorls, the fields are moving in the same direction on all sides.    For example, the one on the left is spinning clockwise and the one next to it on the right is spinning counter clockwise.  In between the whorls, the fields are both moving down – same direction.   The same thing applies for the fields above and below, adjacent fields moving in the same direction.  So far, so good.  These whorls are helping each other out as they move along.

Now, I look at the small rotating field and realize that since the bubble is moving at the speed of light, the rotating field, if it had a crayon, cannot draw a line on the bubble at all, or it would be doing so at faster than the speed of light. Therefore, as each point of the rotating field is drawn on the surface of the bubble, it immediately falls behind the bubble and describes a spiral arc in space that, when looked at in profile, from the top and from the side, could be the sinusoidal magnetic field and its companion electric field that we detect as the field passes us. Any following energy such as for a continuous signal would fall into step with the leading bubble, describing subsequent bubbles behind the first one, but in sync. For now, I am still looking at a single cycle and things are looking better for photons.

Thus, I see countless rotating fields dragging behind the bubble, the bubble that represents the front of the beginning of the radio signal.  I visualize that the size of the rotating fields do not change, but are related to the frequency of the carrier, such that the higher the frequency, the faster they rotate and the smaller they are.   The energy is related to the frequency by Planck’s constant as e = hf.   This means the faster they rotate, the greater the energy.  (Whatever energy these whorls have, it is exceedingly small, but there are lots of them.)  

Now, we need to do a little head scratching.  Can we speculate as to the size of the whorls?  I think we can establish the maximum size of each whorl by assuming that if these are actually photons, then the energy contained in each photon is located in a flattened disk due to relativistic effects as in my drawing in “Speed of Light Regulated“.   If it is rotating around the whorl as in our thought experiment, then no part of the rotating photon can exceed the speed of light.  Therefore, the trip around the circumference of the whorl cannot be faster than the speed of light.

We also have decided to go down a particular path of our thought experiment by assuming that the whorl rotates at the same rate as the frequency of the carrier and so makes a single turn in one wavelength, λ.  We know that  λ=c/f  and also that the circumference = Πd =  λ.   or d = λ/Π.  The diameter of the whorl can’t be more than the wavelength divided by pi.  For a blue photon which has a wavelength of 450nm, the diameter would be d= 143 nm which is quite small, about 1/3 of the wavelength.   For a radio wave of 105 mhz the photon can’t be larger than  0.9 meters, about 1 yard, still about 1/3 of the wavelength, but about 630,000 times larger than for a blue photon.  

There is nothing to say that there can’t be billions upon billions of these photons overlapping each other at every point of the bubble.   In fact, there has to be.   Energy is being poured into the antenna and the output is billions upon billions of photons in ever expanding bubbles.  A photon has energy that we can calculate as e = hf, but h is very small, 6.26×10^-34 joules sec.   For a blue photon this is e = 4.2×10^-14 joules and for a 105mhz photon, e = 6.3 x 10^-28 joules, which is much much smaller.   To put this into perspective it would take 5400 x 10^27 photons (105mh photons) to make one watt-hour of energy.    That’s 5400 billion billion billion photons (roughly) for each watt hour! 

As our bubble expands, the surface “stretches,”  and it is that stretching, as the surface field in dynamically expanding, that causes the field to eventually separate into individual photons as the signal strength falls over huge distances and the wave identity is forever lost – all we have left is photons to try to detect.  The whorls represent in my visualization, the photon/particle aspect of the wave, as the wave is separated into compact quantum induced by the need to tightly spin along the bubble front, each whorl being my visualization of the photon.  

As the field further expands, the various quantum (whorls) begin to separate and the interaction with its neighbors becomes less distinct. Each quantum continues to have the same energy but its neighbors contribute less and less to its effect when exposed to a detector, unless lenses or antennas are used.

If we look at the field as it arrives at a detector (say an antenna), we detect the arrival of the photons as energy buildup on the antenna from one of the peaks involving billions of photons of the carrier followed by a decrease in signal and then a rise to the next peak.  The photon, being on the same order of magnitude as the detecting antenna (by design of the antenna based on electromagnetic theory, not photon theory) is easily captured, but billions upon billions need to arrive in order to make a good signal.   Maybe this dualality of wave / particle can be moved to quantum only – particles.

Enough is enough.  The thought experiment has run its course and it is time to have someone else pick it apart or perhaps add to it.  Well…. after all, it is just a thought experiment, but it’s mine and I’ve now written it down for others to consider or pick at – which should be an easy task.  

Oldtimer

Time Zero – A real Place?

“Time Zero – Ctime”

I would like to discuss a few other things about photons and also very high speed particles and their implications for a special point in time.  Some of these are just thought experiments and may have no basis for a new theory, but some of you may find it interesting at least and perhaps there is some promise of truth in them.

Since the photon experiences zero time during flight, it would be nice to know what is actually going on within the photon during the possibly billions of years of its flight. We know that near the speed of light, time slows dramatically and that a spacewoman in a space ship at near light speed would experience time as if it passes normally, but a stationary observer would see things quite differently. A clock on the wall continues to tick off regular seconds to her while her brother on earth gets older at a much faster rate, all the while knowing that her clock is going very slowly and she is staying young as he grows old.

But a photon is going much faster than a space ship ever can. The entire time of flight is reduced to zero so nothing can happen within the photon during flight.  The flight ends as soon as it begins for the photon. Yet we know there is a finite flight time from our observer perspective, sometimes billions of years for flight, as we see the same photon.

An interesting point is that the photon is capable of living forever because it cannot age if time is stopped, and in cloud chamber experiments we can measure the lifetime of some collision reactions only because the time of reaction is slowed for a high-speed particle due to time dilation. Time dilation near or at c is a real thing.

Yet we know that there is a finite and measurable time of flight from there to here from our perspective, and that a photon, if it has a frequency associated with it should vibrate hundreds of times during each foot of travel.  That is, if we believe it is still vibrating and not frozen as well. When it lands we know that its frequency is related to its energy and thus its color.  Does the photon actually experience this vibration, or does it all occur only when it starts and again when it encounters an obstacle that slows it down (such as within a crystal, or passage through water), or when it changes direction such as during a bounce off of a mirror… or does it occur again only at the moment of destruction, or as it melds around a small object?

We know that the emission of a photon is related to the change in energy states of an electron and both the energy and the frequency of the photon are related to that change of state. So the frequency is a physical attribute of the photon. We aren’t certain what exactly is going on since there are the contradictory facts that the clock of a photon does not change during flight, yet significant time elapses externally, and a photon has vibrational modes.  We also know that the phase doesn’t change, so the implication there is that no vibration actually takes place.  Is something else going on?

Ctime

Here is a new thought. If the time experienced by a photon is zero, where is the photon during the time of its flight? Is there such a time (physicists call it null time) and is it possibly a real place, a relativistic time zero?  Let me call it “ctime” for simplicity, time at speed c.  Ctime would then be where the photon is during flight, a place where time is stopped. Nothing happens, nothing moves, at least not within the photon. The photon moves through space, and doesn’t even vibrate, but the photon experiences nothing because it is embedded in ctime.

Now, suppose all ctimes are the same!  A special point located in relativistic time.    Not the same space-time, but the same time-space, a special place where time is stopped due to relativity, all connected by the null paths.  Photons that have paths that don’t cross would still be in the same place in time – ctime – throughout their flight, but would not ever occupy the same space.  

Photons that have paths that do cross would occupy the same space and same time at the crossing point even if they crossed several decades apart because both would be in ctime and both pass through the same space at some point. The physical times we calculate at the crossing (different) would not be the same as the ctime the photons would experience (same).  Ctime would exist for the photon throughout its existence and even afterward, at least until the null path was disturbed by another photon crossing the same null path.    I say that because the time is frozen and doesn’t change and therefore any point in the null path that is not disturbed remains undisturbed even if the last point of that path is a screen or detector or a piece of rock or someone’s eye.  How can the previous points know if time does not change for those points all stuck in ctime?

Would such photons interfere with each other? In other words, is it possible for a photon that passes through a slit today to actually interfere with another photon that comes through tomorrow?  They would both pass through the same space at the same time in timespace – ctime.  I think it is theoretically possible and thus becomes an alternate way to explain some quantum weirdness effects.  Certainly, it seems more possible than multiple universes.  When does the ctime collapse for a photon? If it is a real place in time, does it even know that the photon has ceased to exist?  For interference to occur in a slit due to ctime, it must continue to exist until at least something physical cuts through the spacetime of the path, such as the placement of a detector or the disturbance of another photon trying to occupy the same space and ctime.  Even then if the detector is removed before the second photon comes through, ctime (at the photon crossing point) is undisturbed unless the detector happens to disturb the point that the photon paths cross, normally some point well past the detector placement.

Let’s go over that again, slowly.  A photon is emitted.  It immediately stops all internal activity and is, in effect in suspended animation until it hits something.  For the photon, the distance of the flight path is shortened to zero and time stops.   Space and time are severely warped.  For the photon, the entire trip from a far galaxy is reduced to zero time and zero distance.  Both space and time are reduced to dots.   Space and time are warped that much.

We can conceive of space being zero distance, a dot, and create a very simple drawing with both ends of the path conjoined at a dot on the paper.  But what about time?   If time is reduced to a dot, where is it?   What I’m suggesting is that the time dot is the same place in time for all photons.  That place in time is what I’m calling ctime.    However, the time-space dot occupies the entire length of the flight path and continues to exist there until each point is later disturbed.   A null path consisting of a continuous line of space-ctime, like a deep valley in time that the photon passes through, warped by its speed.  The valley hangs around in time (ctime) even after the particle ceases to exist at every point in space, because time does not change there.

If the paths of two photons cross, but at different times as we measure it,  then the two photons exist in the same space, but not the same time (as we measure it) – different space-times.  Except… it is my suggestion that they do exist at the same time (for the photons) at the same space-ctime, and never come out of it until that particular space at the crossing point is disturbed.   It would be an alternate explanation for the interference of photons that are emitted one at a time over a period of days or weeks.  

The first photon through a given slot occupies a particular space and is also hung up in ctime.   Its presence in ctime for that space exists even after the photon hits the target.   Each point in the path of the photon experiences the photon in passing as a warp in time.  No information is possible for the past or the future of the photon – and so each point is left with a warped time that is frozen there in ctime.   When another photon happens to cross that same space later, the ctimes are also crossed at that same point and thus the newer photon is shaken by the occurrence just as if it had brushed up against the earlier one.   Interference!   If a slot is closed, then the previous photon ctime paths are disturbed by the closing and no interference occurs when a newer photon comes along later. 

This has implications for high-speed particles with mass as well.  As they approach relativistic speeds, there is time and space distortion for these particles as well.  Electrons and even much heavier particles show diffraction patterns and also show interference patterns even when fired one at a time.  In their cases, the valley of ctime would not be as deep and possibly not persist as long, but space and time are warped just the same.  The interference of one particle with another at a later time may be just the same effect – an existence of a ctime in a not-quite null path left by one particle that disturbs one coming along later.  

An experiment might be constructed such that a paddle sweeps through the entire area where photon interference might occur.  The sweeps to occur between each photon emission.  Such an experiment  might prove this theory if the result is no interference pattern buildup over time when the paddle is used but interference does occur when the paddle is not in use.  I’m suggesting a simple paddle that is wide enough to span the multiple interference points and placed normal to the screen, a paddle that mechanically sweeps through and disturbs the ctimes so that no photon crosses another’s undisturbed ctime.  A paddle next to the slits will not do the trick, so I doubt that this experiment has been done before.  A paddle that only sweeps some of the crossing points would in effect blank out some of the interference pattern and not others.   A real test.

Copyright 2007 by James A. Tabb

Marietta, Ga. 
 

What’s Up with Gravity?

Gravity is a problem for physicists.

It not only affects mass, but all forms of energy. If you add energy to a mass, its gravitational effect is increased as well but only minutely because an enormous amount of energy is equivalent to a small amount of mass.

Gravity is weak, far weaker than electrostatic forces. Jump off a building and you go splat when you hit the earth. What took perhaps 20 stories to accelerate you to the splat speed is gravity. But the thousandths of an inch that you were stopped in was due to electrostatic forces. Electrostatic forces are the forces that keep your fingers from going through the keyboard.

Gravity also affects matter at a distance – forever like distances. Every atom in your body contributes to the earth’s attraction of the moon and the sun. Consider a molecule of water in the ocean. It is pulled as part of a tidal force by the sun and moon and it in return pulls on both the sun and the moon. Taken together it all adds up.

Gravity is not shieldable.  Elctrostatic effects are. You can build shields to protect you from most radiation and from electromagnetic fields. But gravity is different. If you could shield from gravity, you could build a big enough room to float around like spacemen. But the gravity force on a pea is just as strong no matter what you put around it.

Einstein developed a theory for gravitation – General Relativity – in which gravity is the effect of a distortion of space and time in the vicinity of mass. We can visualize that in the isolated case of the earth moving around the sun as a depression of a membrane representing space and time around the sun.

However, we can’t get our minds around that being the case when you or I standing on a set of scales. What space and what time are we distorting? How does an individual electron’s mass affect another one a mile away? A million miles away? What is going on?

Lets make a distinction: Gravity and Gravitation. “Gravitation” is the attractive influence that all objects exert on each other, whereas Gravity is the force that objects exert on each other due to their relative masses.  Maybe I can state it more simply: one is an influence (gravitation) and the other is a measurement (gravity). For example, a marine sergeant can influence a recruit to jump by yelling at him/her; how high they jump is a measurement. Gravitation is the attractive influence of you or I on the scales by the earth’s mass in relation to our mass. The scale indicates the weight. The force causing that scale’s hand to move is a measurement of gravity.

Fields

Fields are invisible lines drawn around objects to represent the points of equal strength of some measurable value. For example we can draw field lines around a magnet’s poles – points where the strength of the magnetic pull are equally strong. You have probably seen (or seen pictures of) magnetic filings on paper above a magnet. Those are lines of force that represent the effect of field gradients, not the points of equal strength that I’m making a point about here. The filings line up along gradients of the fields of the magnets, dipole to dipole so they create lines running from one pole to the other. These lines are often called fields. The ones I’m speaking about are equal strength fields that surround each pole. The filings are linked across those equal strength fields and bridge across the gradients, dipole to dipole.

Fields around single (isolated) objects, such as a charge field around an electron or such as a gravitational field around the same electron, are spaced outward like a shell, keeping the shape of the object but expanding as they go, unless interfered with by another field from another object. The difference is that other objects don’t interfere with the gravitational field (unless it is supermassive like a black hole) All points an equal distance from the object have the same intensity or measurable value. Field lines get weaker as you go away from the object due to the measurable effect becoming weaker as you move away This results in a field gradient from one field surface to the next.

A disturbance at the object (say somehow its mass doubles as two atoms merge) changes the fields at the speed of light, like a ripple in a pool of water. In other words, if the moon were somehow removed at a given moment, the earth would still feel the gravitational pull for just over 1 second (1.2 to 1.3 seconds). If the sun were removed at a given instant, we would not know about it (visually or gravitationally) for about 8.3 minutes.

A disturbance of the type where the mass doubles would cause the field shell that represents a given strength to jump to a distance further away from the mass center. The change would occur at the speed of light, so it is dependent on the distance to that field line or surface. It does not change instantaneously as some suppose and it does not change gradually as might otherwise be supposed. Therefore an object at that point would become affected by gravity at the same instant that light would arrive, not before.

The gravitational fields around an object have gradients that decrease with distance, but go on forever. An atom in your arm has a field that reaches the sun and beyond, but very very weakly and completely swamped (for measurement purposes) by all the other fields generated within the earth. Just the same, it does contribute. Everything adds up. Move your arm and the fields change throughout the universe at the speed of light.

Isolated static (electrical) charges affect each other though the gradients of the fields. They want to move toward each other if the charges are different and the fields tend to cancel or else move away from each other if the charges are alike. They move or experience forces across the gradients. Moving charges affect each other in different ways and their movement produces magnetic fields and magnetic fields also induce movement of charges. They are strongly attracted or forced apart if they are close together because any outside influence that would pull or push them are effectively shielded over relatively short distances by their environment.

What about gravity? Gravitational pull is very weak. What causes that weakness? Why don’t objects closer together (such as your fingers on the keyboard with the keyboard) strongly attract each other? Why doesn’t the massive earth crush us in its gravitational field?

My thoughts

These are just my thoughts, part of my personal theory of gravity. Feel free to discount it or shoot it down.

Isolated static gravitational objects also affect each other through gradients of the fields. Atoms, particles with mass, and all forms of energy are always moving. They jiggle. When they vibrate they do so in the gradient of another object’s gravitational field. I’m not talking about the vibration of one atom against another as being any significant part of the gravitational effect, but instead talking about the quarks and other ingredients of the atoms that are always in motion, those most intimate particles that have mass of their own. The gradients they encounter are also jiggling because the remote masses are ultimately composed of the component parts of atoms, and free particles, always moving.

They are affected only minutely by the gravitational field, which has a very small gradient over the volume of the effective mass of the particle, but they are affected nevertheless. The effect is somewhat like the small magnetic particles which form dipoles in magnetic fields and line up across the magnetic gradients, but these are not magnetic but instead gravitational. There is a gravitational tendency to move toward the other object’s mass, toward stronger gradients and away from smaller ones. Masses tend to congregate, group into crowds, pull together, clump up and possibly create cosmic objects, even suns and earths.

It is not that the gravitational field is so small. It is the competition of the gravitational field of our localized individual component masses within the earth’s gravitational field gradients embedded within the background of all the fields of all the masses of the universe also affecting us.

This competition is not present for electrostatic and electromagnetic fields, so they appear stronger – much stronger.

Our jiggling particles have masses that operate within a gradient that is quite small compared to the size of those masses. All the masses in the universe are contributing to the fields experienced by the particles in our body and the result is a small but measurable attraction that is normal (perpendicular) to the gravitational fields of the individual particles with a tendency to be pulled (a force) toward the center of those fields, force and/or movement toward the stronger gradient of the field. But the overall effect is small even though the earth is huge in relation to us.

When an object absorbs energy, its mass goes up because its jiggling goes up and it has a measurably (but very small) higher gravitational effect as it interacts with the field gradients. Cooling a mass to near absolute zero reduces the energy within the mass, those parts that bang against each other, but does not stop the motion of the quarks and other ingredients that make up the rest mass of the object’s atoms. So the gravitational attraction for that object does not diminish appreciably as it cools.

Bring objects closer together, and the gradients get higher at a quickening rate and the attraction gets higher and that effect swamps any energy effect due to cooling or heating. Just the same, the gradients from the masses of the rest of the universe are there all the time and tend to keep the gravitational force small compared to other forces generated by other fields which have limited effect. The gravitational effect can be quite large, but the gravitational force quite small. Gravitational fields around particularly large objects such as black holes and even our sun do get warped because space and time are also warped in those vicinities.

Space-Time Warping

What I leave unanswered with this paper so far is what gravity actually is. What I’ve described above is why I think that a field gradient makes things tend to have gravitational attraction and develop a force between them that we call gravity. I didn’t say anything about what makes the fields themselves. You can go to a certain point around an object and trace out a measurable effect and call it a field but you can’t say what caused the measurable effect without resorting to Newton or Einstein or perhaps gravitons.

In my opinion I have no quarrel with Einstein’s general relativity and its gravitational predictions or his development of the theory of gravity. It is a beautiful work. The mathematics are wonderful to behold and I don’t pretend to know anything about them other than they work and continue to stand up to careful study and experiments, and they also answer the question as to what makes the fields possible, why you can measure an effect at any distance from an object with mass.

It is a matter of relativity!  

 It is space-time warping, the same as with photons. Gravitation seems to be part of the same effects that I’ve been describing for quantum weirdness, and the fact that fields expand or adjust themselves at the speed of light helps make that case.

Fields as I’ve described them don’t move at the speed of light, they are static for static objects. Changes in the field at the source do adjust the fields at the speed of light. However, you can make a case for the changes to be constantly and forever moving the ripples because the masses within every atom (quarks, etc) are always moving and we and all our masses are forever moving on this earth and through the universe. In other words, the changes in the fields, though minute, are always moving at c and always present.

It may be these changes moving at the speed of light that is always running on zero-time zero-distance that are the foundation of action at a distance and gravitation in particular. Every particle in every atom is moving and so there are always field changes moving away at the speed of light, always attached to both the particle and the masses it encounters elsewhere in space and always applying a minute force on any mass it encounters wherever in the universe that might be.

Gravitons

I personally do not adhere to the idea that gravitons exist. Gravitons are a hypothetical theoretical particle that mediates the force of gravity within gravitational field theory. Such a particle would move at the speed of light and have a spin of 2. It would also be massless as a necessity of its speed. It has a lot of problems including “blowing up” (becoming infinite) in situations involving more than a couple of them at any time at energies in the ultraviolet range. The equations in the latter case cannot be renormalized. String theory helps the graviton, but it too has enormous problems.

If there is such a thing as a graviton, it is actually an effect of the changes in the ripples of the field that is caused by the motion of the components of the atoms or free flight particles. As such it could be conceivably be quantized and thus the ripples in the fields might be quantized. So maybe there is such a thing after all, but I’m not sure you can call it a particle and I’m not convinced it has to be a quantum object. The ripples I’m talking about moving from one mass to another are changes in the field that expands as it grows, and diminishes in strength as it goes flying out into space in all direction at once like a shell of a balloon expanding at c. That would be stretching the definition of a graviton quite a bit.

I think my way of looking at it is much simpler and has the effect of making sense to my feeble brain. I’ll leave it to Newton’s equations for most purposes and Einstein’s for special cases for the calculations. They work well. I’m sorry, but gravitons don’t excite me.

Copyright 2007 by James A. Tabb

Marietta, Ga.

aka  Oldtimer

Quantum Weirdness – A Matter of Relativity? Part 4

Quantum Weirdness

A Matter of Relativity?

Copyright 2006/2007 James A. Tabb  

Part 4: Photons that hit tilted glass

Individual photons directed at tilted glass have an option of being reflected or going through. They can’t do both because they can’t be divided, or so we are told. Yet some experiments seem to imply that they sometimes take both paths unless a detector is in place. It is my thought that the foreshortened world of the photon explains this phenomenon too  

  

       

 

  

Photons on tilted glass  

Figure 9:  Photons on tilted glass

 

Relativity at Wor

Because the photon is moving at the speed of light, the entire path from emission to destruction has zero length and zero time passage.   Time and space are both warped while it is in flight.   It does not matter what we measure or calculate.   The entire experimental assembly is to the photon like a flat surface with all the options congruent to the front surface, that surface being stuck to the point of its emission, and shrunk to zero thickness, glass, air paths, mirrors and all. All the open paths are the same length (zero) to the photon, regardless of how we measure them.   

   

If a detector is in place, it is in the way immediately, independently of distances and times as we measure them. The photon is instantaneously (from a relativistic perspective) connected to the screen by all optional paths that lead to the same points, and the photon separates without breaking until it begins to meld together somewhere. Otherwise it takes one path or another and still gets where it is going.   

There is an argument that the photon must go through the glass whole since the photons transmitted through the glass are actually retransmissions within the glass, not the same photon that impacts it. That argument then says that the other path has to either have had no photon or a whole one also (creation of energy not allowed). It also says that the photon must retain a whole packet of energy.   

My argument is that the entire path, including the glass and the remaining path through the experiment all the way to a recombination point is impossibly thin to the photon at the time it hits it.   There is no separation because the paths are zero distance apart.  This argument also avoids the messy retransmissions within the glass argument, as they are not necessary.  

It can then “feel’ itself through this very thin apparatus. It is thus capable of separating into two paths that recombine at the proper point before the photon separates at the surface of the glass. This keeps the photon whole and yet allows it to take multiple paths.  

Our perspective seems to be that the flight path is of finite duration and the paths seem to be of vastly different lengths. Thus we don’t always understand what is happening. The photon could care less about our perspective – it is working within a highly warped time and space and we are not.  If it finds a way to recombine without violating its energy conservation directive, it will do so even if a portion of it separates at the glass, wraps around the various mirrors and recombines with a portion that is passing through the glass. That is ok since the total distance of its flat world is still zero and the physical recombination takes place before the physical separation takes place.  United they move!   

The experimental apparatus grows as the photon passes through it.  Those parts in front of the photon are still stuck to its nose and of zero remaining depth.  Those parts to each side of the photon have normal depth and structure.  Those it has passed are invisible and forever behind it, vanished.   When it hits a glass surface, all the paths in front of and also along its reflected paths are plastered as if congruent.  Thus all open paths are available at that instant.  If any are closed, then those paths are not available for passage.     

Even where a detector is switched in (from our perspective) after it passes through the glass, it is a closed path to the photon at the glass surface because the entire path has zero depth the instant it is emitted due to the photon being at c throughout its entire path.   Indeed the path with the detector is closed when it is emitted, as all the paths are of zero depth the instant emitted, even if the photon is switched in at some later time (from our perspective).   Relativistic foreshortening is instantaneous to an object running at c.  This is all taking place in a space-time warp where length is zero, time is zero for the photon’s flight but not for us, the stationary observers!  

The difficult thing to wrap our minds around is the fact that the instant the photon is emitted, whether on a distant star, or on a filiment within our laboratory, the entire path that it takes occurs at the same instant of time throughout its path, birth, flight, death – all instantaneous to the photon (no matter what happens within that path in our “normal world” time-frame) .   If a detector is absent at the instant the photon is emitted and then switched in later before it arrives (from our normal world perspective), the photon is fully affected at the instant of emission (from a relativistic world perspective) as if it had been there the whole time, and thus the outcome is determined at that instant, not when we think it has passed.   It cannot be fooled.  

It is all a matter of relativity 

Next:  Entangled particle weirdness explained.

 

Quantum Weirdness – A Matter of Relativity? Part 1

Quantum Weirdness

A Matter of Relativity?

Copyright 2006/2007 James A. Tabb

Part 1: Introduction and Photons In Glass

Quantum Electrodynamics (QED) theory has developed to be the theory that defines almost all of the understanding of our physical universe. It is the most successful theory of our time to describe the way microscopic, and at least to some extent, macroscopic things work.

Yet there is experimental evidence that all is not right. Some weird things happen at the photon and atomic level that have yet to be explained. QED gives the right answers, but does not clear up the strange behavior – some things are simply left hanging on the marvelous words “Quantum Weirdness”. A few examples of quantum weirdness include the reflection of light from the surface of thick glass by single photons, dependent on the thickness of the glass; the apparent interference of single photons with themselves through two paths in double slit experiments; the reconstruction of a polarized photon in inverted calcite crystals, among others.

This paper introduces some ideas that may explain some of the weirdness.

Photons and Relativistic Effects:

I suggest that most of the difficulties we have in addressing the various weirdness phenomena at the particle level can be traced to relativistic effects. It all comes down to the two different simultaneous viewpoints: The one we can see and measure, and the one the photon experiences. Relativistic effects rule the photon world and our life experiences rule ours.

Consider that photons travel at the speed of light and thus experience relativistic effects. What are these effects? Einstein gave us some tools to work with to describe the various space-time relativistic changes as shown in Figure 1. There is a mass equation also, but the mass increase is not a factor here, since we know that the photon has no rest mass.

Relativistic Equations

Figure 1.   Relativistic Effects at c

The photon’s clock stops because the time between clock ticks becomes infinitely long at c. Similarly, the distance traveled becomes zero because the photon’s unit inch becomes infinitely long and stretches to the end of its journey in one bound. In other words, the entire path is foreshortened to zero length, and everything in its path is compressed to a dot.

We, on the other hand, see the photon from our experimental perspective. Photons move at speed c, take a nanosecond to go about a foot, take centuries to go from a nearby galaxy to earth, all of which we can measure or calculate with confidence and confirm with experiments.

The Photon’s Go-Splat World

The photon lives in a “go-splat” world. The clock of a photon completely stops the instant it is emitted and stays stopped throughout its journey. The distance traveled by a photon becomes zero as compared to the distance measured by the stationary observer. It may take a photon a billion years to cross from a distant galaxy to our telescope from our perspective, but for the photon, as soon as it is emitted, it arrives – splat; there is no time elapse in the photon world. In effect, the space and time between the photon’s emission and its destination are severely warped.

Therefore, the photon’s world is flat and stapled together, front-to-back, between its start point and its end point. In effect, the photon is touching its emitter on one end and our eye on the other with zero depth of field. Whatever phase it has at the time of emission, it has when it hits our telescope because it is all frozen in time. Physicists call the time experienced by the photon null time and the path the null time path.

It is this stapled together, zero time world that I believe explains much of the quantum weirdness we experience. Our life and experimental experiences are so strong that we can’t easily get our minds around the relativistic phenomena.

What the photon would know of the experimental setup, whatever it is, consists of wake-up calls at various edges or medium changes and eventually wherever it is absorbed in our screen or detector, all zero distance apart. This is vastly different from our perspective where everything is so carefully laid out, separated, calibrated with finite distances and photon flight times.

From our perspective, if it is going across a table, it moves about a foot every nanosecond. If it is going across the universe it takes years, even millions or billions of years to get from there to here. However we see it or calculate it, the time it takes for the photon’s lifetime is always zero. Go-Splat! As soon as it leaves on its journey, it arrives.

Quantum Weirdness in Glass

One of the weird aspects of photons involves reflection from glass of varying thickness. Send a laser pointer beam perpendicular to a pane of glass and about 4% of it will reflect back, on average, but, by carefully selecting glass of various thicknesses, the reflections vary from 0% to 16%. Glass a foot thick can be slightly adjusted in thickness to not reflect at all! All the light goes into the glass – perfect transmission. QED easily shows how this works for light beams. Rays from the back of the glass interfere with the rays coming in the front so as to cancel the reflection if the wavelength is a multiple of ½ wavelength.

However, the cancellation at ½ wavelength also works for individual photons for thick glass, and there seems to be no answer other than “quantum weirdness”. How does an individual photon know how thick the glass is the instant it hits the front surface when the back surface is thousands of wavelengths away? The reflected photon would be six feet away before a copy could make a round trip through a foot thick piece of glass. (Two feet round trip at 1/3 speed of light in air)

Quantum Weirdness and Relativity

Lets look closer at our foot thick piece of glass. The photon is moving at c and from a relativistic perspective our piece of glass has zero thickness (our entire experiment has zero thickness) as shown in Figure 2a.

Photon in thick glass

Figure 2. Photon in Glass

Immediately after impact, a full  half wave of the photon fits completely into the glass (2c), no matter how thick. The photon’s wavelength in glass is only 1/3 of its air wavelength. If the thickness of the glass is a multiple of a half-wave of the (shortened) photon, the photon will go right on through without reflection. Otherwise, depending on the thickness, some percentage (0 to 16%) of them will reflect.  In effect, the glass collapses to zero thickness if it is an exact multiple of the half wavelength, and if not, there is an overhang on one of the collapsed thicknesses that determines the probability of reflection.  Thus the photon does not have to “wiggle” its way to the far side and back to make its decision. If it is going to reflect, the decision is immediate due to the glass being foreshortened to fit the photon. It is, in fact, relativistic foreshortening of the glass.

Note, although the surfaces in the drawing above and those that follow are drawn with straight lines and flat, they are shown that way only for illustrative purposes. At c, all the points in the direction of travel are pulled to one point at the nose of the photon because they are zero distance apart to the photon, and surfaces near the path are severely bent.

It should also be noted that, once within the lattice of the atoms of glass, the atoms to each side of the photon resume their normal spacing and are no longer foreshortened. This is because they are perpendicular to the direction of travel. Those atoms in front continue to be shortened to meet the photon. Thus the photon length and the glass thickness exactly match, regardless of thickness, if the glass is an exact multiple of a half wavelength.  In that case, the photon completely enters without reflection. If the thickness does not fit the wavelength of the photon exactly, there is a crisis due to a mismatch in which the glass is not quite zero thickness to the photon. The probability of reflection depends on the degree of mismatch, but the reflection decision is made while the photon is still at the front surface and just inside.

There are two effects going on simultaneously: The relativistic effects for the photon and the realistic effects for the observer. The photon fits within the entire experiment (zero thickness, no wiggle time due to no time elapse) while we, as the stationary observers, see the entire experiment where the photon is traveling at c and has to wiggle 130,000 times to get through the glass in a measurable time (about 3 nanoseconds for a foot of glass). One case of quantum weirdness explained by relativistic effects.

Next: Explaining Double Slit Weirdness